1772
Comment:
|
1771
|
Deletions are marked like this. | Additions are marked like this. |
Line 10: | Line 10: |
||Viktor ||Saarland || 7ms|| 6 || 24µs || 20min21sec ||Intel T9300 @ 2.5GHz / 6 GB ||Java || ||niklas ||Saarland || 28ms|| 5 || 7µs || 23min40sec ||Intel 2410M @ 2.3GHz / 4 GB ||C++ || |
||Viktor ||Saarland || 7ms|| 6 || 24µs || 22min33sec ||Intel T9300 @ 2.5GHz / 6 GB ||Java || ||niklas ||Saarland || 5ms|| 5 || 7µs || 23min40sec ||Intel 2410M @ 2.3GHz / 4 GB ||C++ || |
Results for Exercise Sheet 8 (Transit Node Routing results)
Add your row to the table below, following the examples already there. In the second column put Saar or BaWü (put numbers for only one dataset, preferable BaWü). In the third column, put the average time (per node) to compute the set of access nodes, in *milli*seconds (rounded to the next integer). In the fourth column, put the average number of access nodes per node. In the fifth column, put the put the average query time in *micro*seconds (rounded to the next integer). In the sixth column, put the average shortest path cost (in minutes and seconds). Last two columns as usual, see the result tables for Exercise Sheet 1, Exercise Sheet 2, Exercise Sheet 3, Exercise Sheet 4, Exercise Sheet 6, and Exercise Sheet 7.
Name |
Dataset |
av. time access nodes |
#access nodes |
av. query time |
av. SP cost |
Processor / RAM |
Language |
Example |
BaWü |
1ms |
11 |
11µs |
111min11sec |
Intel X5560 @ 2.8Ghz / 96 GB |
C++ |
SE KF |
BaWü |
1ms |
36 |
4µs |
97min24sec |
Intel P8600 @ 2.4Ghz / 4 GB |
C++ |
Stefan W |
Saarland |
1ms |
6 |
26µs |
20min44sec |
Intel 2670QM @ 2.2Ghz / 6 GB |
Java |
Viktor |
Saarland |
7ms |
6 |
24µs |
22min33sec |
Intel T9300 @ 2.5GHz / 6 GB |
Java |
niklas |
Saarland |
5ms |
5 |
7µs |
23min40sec |
Intel 2410M @ 2.3GHz / 4 GB |
C++ |