
ARRAY IN C++
AMMAR QASEEM

Wed. 12 Jan. 2011

 INTRODUCTION.

 STSTIC ARRAY.

 REPRESENTATION OF 1D AND 2D ARRAY

 DYNAMIC MEMORY ALLOCATION.

 DYNAMIC ARRAY (VECTORS).

Array is containers in the memory for several

values of the same type and have same name.

 An array is a series of elements placed in

contiguous memory locations

 Most programs use arrays.

 Advantages of arrays

 Random access in O(1).

 Ease of use.

• Types :

 Static Array, is a fix-size array.

Dynamic Array. dynamic array, growable

array, or resizable array, is a random

access, variable-size list data structure that

allows elements to be added or removed.

 Arrays store a constant-sized sequential set of blocks.

 Each block containing a value of the elected type

under a single name.

 Individual elements are accessed by their position in

the array which called index.

 What type of values and how many values to store

must be defined as part of an array declaration.

 The size of array must be a const (integer greater

than zero).

 You cannot use user input to declare an array,

so the size of an array has to be known at compile

time.

 1-dimensional array x = [a, b, c, d]

 Map into contiguous memory locations.

Memory

a b c d

start

• location(x[i]) = start + i

space overhead = 4 bytes for start

+ 4 bytes for x.length

= 8 bytes

(excludes space needed for the elements of x)

Memory

a b c d

start

x []

 There are three ways to represent 2 dimensional

array in the memory:

(1) Row-Major mapping representation,

(2) Column-Major mapping representation, and

(3) Array-of-array representation.

• Convert into 1D array by collecting elements by

rows.

• Within a row elements are collected from left to right.

• Rows are collected from top to bottom.

• Example 3 x 4 array:

a , b , c , d

e , f , g , h

i , j , k , l

• We get y[] = {a, b, c, d, e, f, g, h, i, j, k, l}

row 0 row 1 row 2 … row i

• Assume x [][] has r rows and c

columns.

• Each row has c elements

• i rows to the left of row i

• so ic elements to the left of x[i][0]

• so x[i][j] is mapped to position

ic + j of the 1D array

row 0 row 1 row 2 … row i

0 c 2c 3c ic

= 4 bytes for start of 1D array +

4 bytes for length of 1D array +

4 bytes for c (number of columns)
= 12 bytes

(number of rows = length /c)

row 0 row 1 row 2 … row i

start

 Convert into 1D array by collecting elements by
columns.

 Within a column elements are collected from top
to bottom.

 Columns are collected from left to right.

a , b , c , d
e , f , g , h
i , j , k , l

 We get y = {a, e, i, b, f, j, c, g, k, d, h, l}

 This representation is called the array-of-arrays representation.

 Requires contiguous memory of size 3, 4, 4, and 4 for the 4 1D arrays.

 1 memory block of size number of rows and number of rows blocks of

size number of columns (no. of rows + no. of rows * size of column)

a b c d

e f g h

i j k l

X []

view 2D array as a 1D array of rows
x = [row0, row1, row 2]
row 0 = [a, b, c, d]
row 1 = [e, f, g, h]
row 2 = [i, j, k, l]

and store as 4 1D arrays

2-dimensional array x

a , b , c , d

e , f , g , h

i , j , k , l

x.length = 3

x[0].length = x[1].length = x[2].length = 4

a b c d

e f g h

i j k l

x[]

4 separate

1-dimensional

arrays

space overhead = 4 * 4 bytes

= 16 bytes

= (number of rows + 1) x 4bytes

The 4 separate arrays are x, x[0], x[1], and x[2].

a b c d

e f g h

i j k l

X []

4 separate

1-dimensional

arrays

 Value of an array is in fact pointer to first element.

 Can use in programs, name of array as pointer to

first element.

 Note : Array name is not a variable, so

assignment to it illegal.

• Disadvantages

1) Constant size.

2) Large free sequential block to accommodate

large arrays.

3) Buffer Overflow (no Bounds Checking) .

 What is buffer overflow or buffer overrun ?

 It is an anomaly where a program, while writing

data to a buffer, overruns the buffer's boundary

and overwrites adjacent memory.

 Buffer overflows can be triggered by inputs that

are designed to execute code, or alter the way the

program operates.

 This may result in erratic program behavior,

including memory access errors, incorrect results,

a crash, or a breach of system security.

Buffer Overflow (no Bounds Checking)

 Because

Arrays are fixed size.

C and C++ provide no built-in protection
against accessing or overwriting data in
any part of memory.
Programmers forget to check bounds, or

simply assume nothing can go wrong.
 Why no bounds checking on array indexes?
 Because it affects :

Runtime performance.

 Solution 1 - Check array bounds by programmer

int a[1000]; // Declare an array of 1000 ints

int n = 0; // number of values in a.

. . .

while (n < 1000 && cin >> a[n]) {

n++;

}

 Solution 2 - vectors - the correct solution

Solution for disadvange of static array

 Dynamic allocation - Solution for fixed size

restriction by using new operator.

 Vectors - Solution for buffer overflow, fixed size,

unknown maximum and current size, ...

 Dynamic memory allocation is the allocation of

memory storage for use in during the runtime of

that program.

 By using new operator, you can allocate memory

dynamically without having to know the size you

should declare.

 A dynamic allocation exists until it is explicitly

released, either by the programmer or by a

garbage collector implementation

new and delete

 For dynamic memory allocation we use the new and delete

keywords

 new operator, dynamically allocates memory on the heap.

 new attempts to allocate enough memory on the heap for

the new data. If successful, it initializes the memory and

returns the address to the newly allocated and initialised

memory.

 Using new operator, it returns a pointer to the beginning of

the new block of memory allocated.

 It is not possible to directly reallocate memory

allocated with new [].

 To extend or reduce the size of a block :

 Allocate a new block of adequate size,

 Copy over the old memory, and

 Delete the old block.

 Once it is no longer needed it should be freed so

that the memory becomes available again for

other requests of dynamic memory by using

delete operator.

 delete returns memory allocated by new back to

the heap.

 A call to delete must be made for every call to

new to avoid a memory leak.
– Note : C++ programmers are responsible for memory

management.

 After calling delete, the memory object pointed to
is invalid and should no longer be used.

 Many programmers assign 0 (null pointer) to
pointers after using delete to help minimize
programming errors.

int size = 10;

int *p_var = 0; // new pointer declared

p_var = new int [size];// memory dynamically allocated

/* other code*/

delete [] p_var; // memory freed up

p_var = 0; // pointer changed to 0

Vectors are a kind of sequence containers.

Vector is an expandable array.

 Elements stored in contiguous storage locations,

 Elements can be accessed not only using iterators

but also using offsets on regular pointers to

elements.

 Data members holding the capacity and size of

the vector.

 The size of the vector refers to the actual

number of elements, while the capacity refers to

the size of the internal array.

 The first "size" of elements are constructed

(initialized) and the last "capacity - size"

elements are uninitialized.

Vector containers are implemented as dynamic

arrays; Just as regular arrays.

Unlike regular arrays, storage in vectors is

handled automatically, allowing it to be expanded

and contracted as needed.

An STL vector always allocates memory for its

data on the heap. Heap allocation is slower than

stack allocation.

 Vectors are good at:

Accessing individual elements by their position

index (constant time).

 Iterating over the elements in any order (linear

time).

 Add and remove elements from its end (constant

amortized time).

 Vectors provide a standard set of functions for

accessing elements, adding elements to the end

or anywhere, deleting elements and finding how

many elements are stored.

Example.

http://en.wikipedia.org/wiki/Function_(computer_science)

Thank you for your

attention…

 References

http://www.cplusplus.com/doc/tutorial/

http://www.fredosaurus.com/notes-cpp/

http://programming.im.ncnu.edu.tw/

https://www.securecoding.cert.org/confluence/dis

play/cplusplus/

http://en.wikipedia.org/wiki/

http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/doc/tutorial/
http://www.fredosaurus.com/notes-cpp/
http://www.fredosaurus.com/notes-cpp/
http://www.fredosaurus.com/notes-cpp/
http://programming.im.ncnu.edu.tw/
https://www.securecoding.cert.org/confluence/display/cplusplus/
https://www.securecoding.cert.org/confluence/display/cplusplus/
http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/doc/tutorial/

