SEMINAR IN
C++ vs. Java

ARRAY IN C++

AMMAR QASEEM

Wed. 12 Jan. 2011

—

OUTLINES

- INTRODUCTION.

- STSTIC ARRAY.

- REPRESENTATION OF 1D AND 2D ARRAY
- DYNAMIC MEMORY ALLOCATION.

- DYNAMIC ARRAY (VECTORS).

—

INTRODUCTION

» Array IS containers in the memory for several
values of the same type and have same name.

» An array Is a series of elements placed In
contiguous memory locations

» Most programs use arrays.

» Advantages of arrays

= Random access in O(1).

= Ease of use.

—

INTRODUCTION

- Types :

» Static Array, IS a fix-size array.

»Dynamic Array. dynamic array, growable
array, or resizable array, Is a random
access, variable-size list data structure that
allows elements to be added or removed.

—

STATIC ARRAY

» Arrays store a constant-sized sequential set of blocks.

» Each block containing a value of the elected type

under a single name.

» Individual elements are accessed by their position in

the array which called /ndex.

» What type of values and how many values to store

must be defined as part of an array declaration.

STATIC ARRAY

» The size of array must be a const (integer greater

than zero).
» You cannot use user input to declare an array,

so the size of an array has to be known at compile

time.

—

1D Array Representation

Memory

a b c¢c d

Start

» 1-dimensional array x = [a, b, c, d]

» Map into contiguous memory locations.

* location(x[i]) = start + |

—

Space Overhead of 1D Array
X[] Memory

a b ¢ d

Start

space overhead = 4 bytes for start
+ 4 bytes for x.length
= 8 bytes
(excludes space needed for the elements of x)

—

2D Array Representation

» There are three ways to represent 2 dimensional
array in the memory:

(1) Row-Major mapping representation,
2) Column-Major mapping representation, and

3) Array-of-array representation.

—

Row-Major Mapping

- Convert into 1D array by collecting elements by
rows.

- Within a row elements are collected from left to right.
- Rows are collected from top to bottom.

row 0 row 1 row 2

- Example 3 x 4 array:

- We get {a, b, c, d,

Locating Element x[i][j]

0 C 2C 3C IC

row 0O row 1 row 2

- Assume x [][] hasrrows and c
columns.

- Each row has c elements
- 1 rows to the left of row |
- S0 Ic elements to the left of x]i][O]
- S0 X]i][j] 1Is mapped to position
ic +] of the 1D array

Space Overhead
Row-Major Mapping

row 0O

|

Start

row 1 row 2

= 4 bytes for start of 1D array +
4 bytes for length of 1D array +

4 bytes for C (number of columns)
= 12 bytes

(number of rows = length /c)

Column-Major Mapping

» Convert into 1D array by collecting elements by
columns.

» Within a column elements are collected from top
to bottom.

» Columns are collected from left to right.
a,b,c,d
e,f,g,h
1,], k, |

» Wegety={a,e, I,b,f],c 0,k d hl}

Array-of-array Representation

X[]

» This representation is called the array-of-arrays representation.
» Requires contiguous memory of size 3, 4, 4, and 4 for the 4 1D arrays.

» 1 memory block of size number of rows and number of rows blocks of

size number of columns (no. of rows + no. of rows * size of column)

Array-of-array Representation

2-dimensional array x
a,b,c,d
e,f,g,h

1,], k, |

view 2D array as a 1D array of rows
= [row0, rowl, row 2]
row0O=][a,Db,c,d]
rowl =[e, f, g, h]
row 2 =i,], k, 1]

.and store as 4 1D arrays

Array-of-array Representation

4 separate
1-dimensional
arrays

X.length = 3
X[0].length = x[1].length = x[2].length = 4

—

Space Overhead

Array-of-array Representation
X[]

4 separate

e f g h : :
HEEN 1-dimensional
arrays

space overhead =4 * 4 bytes
= 16 bytes
= (number of rows + 1) x 4bytes
The 4 separate arrays are x, x[0], x[1], and x/2].

—

Relation between Array and pointer

» Value of an array Is in fact pointer to first element.

» Can use In programs, name of array as pointer to

first element.

» Note : Array name is not a variable, so

assignment to it illegal.

—

STATIC ARRAY

- Disadvantages

1) Constant size.

2) Large free sequential block to accommodate

large arrays.

3) Buffer Overflow (no Bounds Checking) .

—

BUFFER OVERFLOW

» What is buffer overflow or buffer overrun ?

» It is an anomaly where a program, while writing
data to a buffer, overruns the buffer's boundary
and overwrites adjacent memory.

» Buffer overflows can be triggered by inputs that
are designed to execute code, or alter the way the
program operates.

» This may result in erratic program behavior,
iIncluding memory access errors, incorrect results,
a crash, or a breach of system security.

BUFFER OVERFLOW

Buffer Overflow (no Bounds Checking)
Because

»Arrays are fixed size.

»C and C++ provide no built-in protection
against accessing or overwriting data in
any part of memory.

»Programmers forget to check bounds, or
simply assume nothing can go wrong.

» Why no bounds checking on array indexes ?
» Because It affects :
Runtime performance.

BUFFER OVERFLOW

» Solution 1 - Check array bounds by programmer

int af1000]; // Declare an array of 1000 ints
ntn=0; // number of values in a.

while (n < 1000 && cin >> afnj) {
n++;

}

» Solution 2 - vectors - the correct solution

—

STATIC ARRAY

Solution for disadvange of static array

» Dynamic allocation - Solution for fixed size

restriction by using n7ew operator.

» Vectors - Solution for buffer overflow, fixed size,

unknown maximum and current size, ...

—

DYNAMIC MEMORY ALLOCATION

» Dynamic memory allocation is the allocation of
memory storage for use in during the runtime of
that program.

» By using new operator, you can allocate memory
dynamically without having to know the size you
should declare.

» A dynamic allocation exists until it is explicitly
released, either by the programmer or by a
garbage collectorimplementation

—

DYNAMIC MEMORY ALLOCATION

new and delete

» For dynamic memory allocation we use the new and delete

keywords
» new operator, dynamically allocates memory on the Aeap.

» new attempts to allocate enough memory on the heap for
the new data. If successful, it initializes the memory and
returns the address to the newly allocated and initialised

memory.

» Using new operator, it returns a pointer to the beginning of

ew block of memory allocated.

DYNAMIC MEMORY ALLOCATION

» It Is not possible to directly reallocate memory
allocated with new /.

» To extend or reduce the size of a block :
= Allocate a new block of adequate size,
= Copy over the old memory, and

= Delete the old block.

—

DYNAMIC MEMORY ALLOCATION

» Once it is no longer needed it should be freed so
that the memory becomes available again for
other requests of dynamic memory by using
delete operator.

» delete returns memory allocated by new back to
the heap.

» A call to delefe must be made for every call to
newto avoid a memory leak.
—Note . C++ programmers are responsible for memory

management.

DYNAMIC MEMORY ALLOCATION

» After calling delete, the memory object pointed to
Is invalid and should no longer be used.

» Many programmers assign O (null pointer) to
pointers after using delete to help minimize
programming errors.

int size = 10;

Int *p_var = 0; // new pointer declared

p_var = new int [size];// memory dynamically allocated
[* ... other code */

delete [] p_var; // memory freed up

p_var = 0; // pointer changed to O

DYNAMIC ARRAY (VECTORS)

» Vectors are a kind of sequence containers.
» Vector Is an expandable array.

» Elements stored in contiguous storage locations,

v

Elements can be accessed not only using iterators
but also using offsets on regular pointers to

elements.

—

STL - VECTORS

» Data members holding the capacity and size of
the vector.

allocator
data /

q17Ze

capacity

» The size of the vector refers to the actual
number of elements, while the capacity refers to
the size of the internal array.

» The first "size" of elements are constructed
(|n|t|aI|zed) and the last "capacity - size"
g are uninitialized.

STL - VECTORS

» Vector containers are implemented as dynamic
arrays,; Just as regular arrays.

» Unlike regular arrays, storage in vectors is
handled automatically, allowing it to be expanded
and contracted as needed.

» An STL vector always allocates memory for its
data on the /seap. Heap allocation is slower than
stack allocation.

DYNAMIC ARRAY (VECTORS)

» Vectors are good at:

» Accessing individual elements by their position

Index (constant time).

» Iterating over the elements in any order (linear
time).

» Add and remove elements from its end (constant

amortized time).

—

VECTORS

» Vectors provide a standard set of functions for
accessing elements, adding elements to the end
or anywhere, deleting elements and finding how
many elements are stored.

» Example.

—

http://en.wikipedia.org/wiki/Function_(computer_science)

Thank you for your
attention...

—

» References

3 http://www.cplusplus.com/doc/tutorial/

3 http://www.fredosaurus.com/notes-cpp/

3 http://programming.im.ncnu.edu.tw/

3 https://www.securecoding.cert.org/confluence/dis

play/cplusplus/

B http://en.wikipedia.org/wiki/

—

http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/doc/tutorial/
http://www.fredosaurus.com/notes-cpp/
http://www.fredosaurus.com/notes-cpp/
http://www.fredosaurus.com/notes-cpp/
http://programming.im.ncnu.edu.tw/
https://www.securecoding.cert.org/confluence/display/cplusplus/
https://www.securecoding.cert.org/confluence/display/cplusplus/
http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/doc/tutorial/

