Compiler optimization in C++

Jens Hoffmann

Chair of Algorithms and Data Structures
Albert-Ludwigs University Freiburg

Seminar Java vs. C++, winter semester 2010

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Outline

0 Compilation in phases
@ Generic view on compilation phases
@ Compiler Abstractions

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Outline

0 Compilation in phases
@ Generic view on compilation phases
@ Compiler Abstractions

Q Optimization Strategies
@ Strategies on SSA Trees
@ Optimization in GCC

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

Outline

0 Compilation in phases
@ Generic view on compilation phases

Jens Hoffmann Compiler optimization in C++

UNI

FREIBURG

Compilation in phases

Generic view on compilation phases
Compiler Abstractions

Compiler structure

Language 1 source code Language 2 source code

Compiler front-end for language 1

Compiker front-end for language 2
Texical Analyzer (Scanner

Texical Analyzer (Scanner)

Syntax/Semantic

Syntax/Semantic
Analyzer (Parser)

Analyzer (Parser)

Intermediate-code Intermediate-code
Generator Generator
Non-optimized code N ol

\ V code
Intermediate code optimizer
Optimized intermediate code

Target-1 Target-2
Code Generator Code Generator
lTavgeH machine code lTarge!rz machine code

= —
b T

o

z
5

FREIBURG

Compilation in phases

Generic view on compilation phases
Compiler Abstractions

Compiler structure

Language 1 source code Language 2 source code

Compiler front-end for language 1
Texical Analyzer (Scanner)

Compiler front-end for language 2
Texical Analyzer (Scannen)

Syntax/Semantic

Syntax/Semantic
Analyzer (Parser)

Analyzer (Parser)

Intermediate-code

Intermediate-code
Generator

Generator
Non-optimized \ ode N V d code
Intermediate code optimizer
Gplimized intermediate code
Target-1 Target.2
Code Generator Code Generator
lTavgeH machine code lTarge!rz machine code
- = -
< <

Figure: Generic compiler

z
5

FREIBURG

Compilation in phases

Generic view on compilation phases
Compiler Abstractions

Compiler structure

Language 1 source code Language 2 source code

Compiler front-end for language 1
Texical Analyzer (Scanner)

Compiler front-end for language 2
Texical Analyzer (Scannen)

Syntax/Semantic

Syntax/Semantic
Analyzer (Parser)

Analyzer (Parser)

Intermediate-code

Intermediate-code
Generator

Generator
Non-optimized \ ode N V d code
Intermediate code optimizer
Gplimized intermediate code
Target-1 Target.2
Code Generator Code Generator
lTavgeH machine code lTarge!rz machine code
- = -
< <

Figure: Generic compiler

z
5

FREIBURG

Compilation in phases

Compiler structu

Generic view on compilation phases
Compiler Abstractions

Language 1 source code Language 2 source code

Compiler front-end for language 1
Texical Analyzer (Scanner)

Compiler front-end for language 2
Texical Analyzer (Scannen)

Syntax/Semantic
Analyzer (Parser)

Syntax/Semantic
Analyzer (Parser)

Intermediate-code Intermediate-code
Generator

Generator
Non-optimized code Non-optimjzed code

\ /

Intermediate code optimizer

Optimized intermediate code

Target-1 Target-2
Code Generator Code Generator

Target-1 machine code lTarge!rz machine code

f B
IS

2

Figure: Generic compiler

@ Frontend checks the
high-level source code in
terms of syntax and
semantics.

UNI
|

FREIBURG

Compiler optimization in C++

Compilation in phases

Compiler structure

Generic view on compilation phases
Compiler Abstractions

Language 2 source code

Language 1 source code

Compiler front-end for language 1

Compiker front-end for language 2

Texical Analyzer (Scanner) Texical Analyzer (Scanner
Syntax/Semantic Syntax/Semantic

Analyzer (Parser) Analyzer (Parser)
Intermediate-code Intermediate-code
Generator Generator

P ode

N A

Intermediate code optimizer

Optimized intermediate code

Target-1
Code Generator

lTavgeH machine code

2

Target.2
Code Generator
lTarge!rz machine code

IS

Figure: Generic compiler

@ Frontend checks the
high-level source code in
terms of syntax and
semantics.

@ Middle-end is where the
optimizations take place.

UNI
|

FREIBURG

Compiler optimization in C++

Compilation in phases

Compiler structure

Generic view on compilation phases
Compiler Abstractions

| Language 2 source code

Language 1 source code

Compiler front-end for language 1
Texical Analyzer (Scanner)

Compiler front-end for language 2
Texical Analyzer (Scannen)

Syntax/Semantic
Analyzer (Parser)

Syntax/Semantic
Analyzer (Parser)

Intermediate-code
Generator

Intermediate-code
Generator

code Non-optimjzed code

\ /

Intermediate code optimizer

Optimized intermediate code

Target-1 Target-2
Code Generator Code Generator

Target-1 machine code lTarge!rz machine code

IS

2

Figure: Generic compiler

Jens Hoffmann

@ Frontend checks the
high-level source code in
terms of syntax and
semantics.

@ Middle-end is where the
optimizations take place.

@ Backend translates
intermediate
representation (IR) into
the target assembly code.§

Compiler optimization in C++

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

GCC compilation in multiple phases

@ Parsing pass

UNI
|

FREIBURG

Jens Hoffmann Compiler optimi.

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

GCC compilation in multiple phases

@ Parsing pass
e Turns the code in tokens.

Jens Hoffmann Compiler optimization in C++

UNI

FREIBURG

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

GCC compilation in multiple phases

@ Parsing pass
e Turns the code in tokens.
e Result is a language dependant IR.

Jens Hoffmann Compiler optimization in C++

UNI

FREIBURG

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

GCC compilation in multiple phases

@ Parsing pass

e Turns the code in tokens.

e Result is a language dependant IR.
@ Gimplification pass

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

GCC compilation in multiple phases

@ Parsing pass

e Turns the code in tokens.

e Result is a language dependant IR.
@ Gimplification pass

e Get a language independant IR.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

GCC compilation in multiple phases

@ Parsing pass
e Turns the code in tokens.
e Result is a language dependant IR.
@ Gimplification pass
e Get a language independant IR.
e In GCC target IR is the GIMPLE language.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

GCC compilation in multiple phases

@ Parsing pass

e Turns the code in tokens.

e Result is a language dependant IR.
@ Gimplification pass

e Get a language independant IR.

e In GCC target IR is the GIMPLE language.
© Pass manager

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

GCC compilation in multiple phases

@ Parsing pass

e Turns the code in tokens.

e Result is a language dependant IR.
@ Gimplification pass

e Get a language independant IR.

e In GCC target IR is the GIMPLE language.
© Pass manager

e Run individual passes in correct order.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

GCC compilation in multiple phases

@ Parsing pass

e Turns the code in tokens.

e Result is a language dependant IR.
@ Gimplification pass

e Get a language independant IR.

e In GCC target IR is the GIMPLE language.
© Pass manager

e Run individual passes in correct order.

e Bookkeeping.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

GCC compilation in multiple phases

@ Parsing pass
e Turns the code in tokens.
e Result is a language dependant IR.
@ Gimplification pass
e Get a language independant IR.
e In GCC target IR is the GIMPLE language.
© Pass manager
e Run individual passes in correct order.
e Bookkeeping.
© Tree SSA pass

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

GCC compilation in multiple phases

@ Parsing pass

e Turns the code in tokens.

e Result is a language dependant IR.
@ Gimplification pass

e Get a language independant IR.

e In GCC target IR is the GIMPLE language.
© Pass manager

e Run individual passes in correct order.

e Bookkeeping.
© Tree SSA pass

e Single Static Assignment form.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

GCC compilation in multiple phases

@ Parsing pass

e Turns the code in tokens.

e Result is a language dependant IR.
@ Gimplification pass

e Get a language independant IR.

e In GCC target IR is the GIMPLE language.
© Pass manager

e Run individual passes in correct order.

e Bookkeeping.
© Tree SSA pass

e Single Static Assignment form.

e Pass optimizes on trees.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

GCC compilation in multiple phases

@ Parsing pass

e Turns the code in tokens.

e Result is a language dependant IR.
@ Gimplification pass

e Get a language independant IR.

e In GCC target IR is the GIMPLE language.
© Pass manager

e Run individual passes in correct order.

e Bookkeeping.
© Tree SSA pass

e Single Static Assignment form.

e Pass optimizes on trees.

© RTL pass

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

GCC compilation in multiple phases

@ Parsing pass
e Turns the code in tokens.
e Result is a language dependant IR.
@ Gimplification pass
e Get a language independant IR.
e In GCC target IR is the GIMPLE language.
© Pass manager
e Run individual passes in correct order.
e Bookkeeping.
© Tree SSA pass
e Single Static Assignment form.
e Pass optimizes on trees.
© RTL pass
o Register Transfer Language.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

GCC compilation in multiple phases

@ Parsing pass
e Turns the code in tokens.
e Result is a language dependant IR.
@ Gimplification pass
e Get a language independant IR.
e In GCC target IR is the GIMPLE language.
© Pass manager
e Run individual passes in correct order.
e Bookkeeping.
© Tree SSA pass
e Single Static Assignment form.
e Pass optimizes on trees.
© RTL pass
o Register Transfer Language.
e Pass optimizes on statements (near to assembler).

Jens Hoffmann Compiler optimization in C++

UNI
|

FREIBURG

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

GCC compilation in multiple phases

@ Gimplification pass

© Tree SSA pass

© RTL pass

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

GCC language lowering

;
trees genericize
C+t C+.+‘ GENERIC -Glmpliﬁ\' GIMPLE GI]:\{ELE G'IMPLE RIL
frees genericize frees optimizer expander
e
frees genericize

Figure: IR flow in GCC

@ Each phase lowers its IR closer to the machine.

UNI
|

FREIBURG

Compiler optimization in C++

Compilation in phases s o~
Generic view on compilation phases

Compiler Abstractions

GCC language lowering

-
trees genericize

C+t 4» GENERIC Gimpliy GIMPLE GI]:\{ELE G'IMPLE
frees genericize frees optimizer expander
e
frees genericize

Figure: IR flow in GCC

@ Each phase lowers its IR closer to the machine.

@ GCC lowering: Parse Tree -> GENERIC -> GIMPLE ->
SSA -> RTL

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

Outline

0 Compilation in phases

@ Compiler Abstractions

Jens Hoffmann Compiler optimization in C++

UNI

FREIBURG

mpilation in phases : ;
Compilatio P Generic view on compilation phases

Compiler Abstractions

Optimizer Needs ...

UNI
|

FREIBUR.

Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

Optimizer Needs ...

@ Need #1 is to have a language independant IR.

UNI
|

FREIBUR.

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

Optimizer Needs ...

@ Need #1 is to have a language independant IR.
@ Need #2 is to have an IR that can be executed abstractly.

UNI
|

FREIBUR.

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

Optimizer Needs ...

@ Need #1 is to have a language independant IR.
@ Need #2 is to have an IR that can be executed abstractly.

o

A\
~

UNI
|

FREIBUR

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

Optimizer Needs ...

@ Need #1 is to have a language independant IR.
@ Need #2 is to have an IR that can be executed abstractly.

o

@ Solution #1: Let compiler have its own language
abstraction: GIMPLE.

A\
~

UNI
|

FREIBUR

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

Optimizer Needs ...

@ Need #1 is to have a language independant IR.
@ Need #2 is to have an IR that can be executed abstractly.

o

@ Solution #1: Let compiler have its own language
abstraction: GIMPLE.

@ Solution #2: Let compiler work with trees.

A\
~

UNI
|

FREIBUR

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

Need #1: GCC and Language Independency

Problem with language independent IRs

Language independant IRs are hairy to program for front-end
programmers.

UNI
FREL _.__

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

Need #1: GCC and Language Independency

Problem with language independent IRs

Language independant IRs are hairy to program for front-end
programmers.

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

Need #1: GCC and Language Independency

Problem with language independent IRs

Language independant IRs are hairy to program for front-end
programmers.

@ GCC provides a
‘close-to-the-program-front-end-target-language’
(CTTPFETL) that still can have language dependencies:
GENERIC.

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

Need #1: GCC and Language Independency

Problem with language independent IRs

Language independant IRs are hairy to program for front-end
programmers.

@ GCC provides a
‘close-to-the-program-front-end-target-language’
(CTTPFETL) that still can have language dependencies:

GENERIC.
@ First introduced with GCCs Java front-end around 2000. |
.
S

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

Need #1: GCC and GIMPLE

Problem with GENERIC
GCC optimizers do not work well with GENERIC.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

Need #1: GCC and GIMPLE

Problem with GENERIC
GCC optimizers do not work well with GENERIC.
GCC internally lowers GENERIC to its GIMPLE language.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

Need #1: GENERIC versus GIMPLE - An Example

1 a = foa {); 1 a = o ()
2 bh=a+10 2 h=a+10;
3 c=5 3 ¢ =5
4 if fa=>b + c) 4 Tl =b + c;
5 ec=bstSa+ (b a) 5 if {a = T1)
6 bar (a. b, c); [{
7 T2 =b /! a
& Ti=h" a
k! ¢c=T2 + T3
10 b=b+ 1,
11}
12 bar {a, b, c); o
Figure: Comparison between GENERIC (left) and GIMPLE (right)_Eé_
o

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

GENERIC versus GIMPLE- Abstract

@ GENERIC

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

GENERIC versus GIMPLE- Abstract

@ GENERIC
e The GENERIC syntax looks quite similar to C/C++!

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

GENERIC versus GIMPLE- Abstract

@ GENERIC

e The GENERIC syntax looks quite similar to C/C++!
e This is why the C/C++ front-ends directly produce the
GIMPLE form.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

GENERIC versus GIMPLE- Abstract

@ GENERIC

e The GENERIC syntax looks quite similar to C/C++!

e This is why the C/C++ front-ends directly produce the
GIMPLE form.

e But: Irregular in structure plus side effects.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

GENERIC versus GIMPLE- Abstract

@ GENERIC

e The GENERIC syntax looks quite similar to C/C++!
e This is why the C/C++ front-ends directly produce the
GIMPLE form.
e But: Irregular in structure plus side effects.
— Hard to have optimizations on GENERIC.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

GENERIC versus GIMPLE- Abstract

@ GENERIC
e The GENERIC syntax looks quite similar to C/C++!
e This is why the C/C++ front-ends directly produce the
GIMPLE form.
e But: Irregular in structure plus side effects.
— Hard to have optimizations on GENERIC.

e GIMPLE

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

GENERIC versus GIMPLE- Abstract

@ GENERIC
e The GENERIC syntax looks quite similar to C/C++!
e This is why the C/C++ front-ends directly produce the
GIMPLE form.
e But: Irregular in structure plus side effects.
— Hard to have optimizations on GENERIC.

e GIMPLE

e Complex expressions broken down into
’|-can-not-break-this-down-anymore-expressions’

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

GENERIC versus GIMPLE- Abstract

@ GENERIC

e The GENERIC syntax looks quite similar to C/C++!
e This is why the C/C++ front-ends directly produce the
GIMPLE form.
e But: Irregular in structure plus side effects.
— Hard to have optimizations on GENERIC.

e GIMPLE
e Complex expressions broken down into
’|-can-not-break-this-down-anymore-expressions’
e New variables for any of these atomic expressions.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

GENERIC versus GIMPLE- Abstract

@ GENERIC

e The GENERIC syntax looks quite similar to C/C++!
e This is why the C/C++ front-ends directly produce the
GIMPLE form.
e But: Irregular in structure plus side effects.
— Hard to have optimizations on GENERIC.

e GIMPLE

e Complex expressions broken down into
’|-can-not-break-this-down-anymore-expressions’

e New variables for any of these atomic expressions.

o GIMPLE representation is more regular in structure.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

GENERIC versus GIMPLE- Abstract

@ GENERIC

e The GENERIC syntax looks quite similar to C/C++!
e This is why the C/C++ front-ends directly produce the
GIMPLE form.
e But: Irregular in structure plus side effects.
— Hard to have optimizations on GENERIC.

e GIMPLE

e Complex expressions broken down into
’|-can-not-break-this-down-anymore-expressions’
e New variables for any of these atomic expressions.
o GIMPLE representation is more regular in structure.
— GIMPLE is ideal to do optimizations on it.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Compilation in phases

Generic view on compilation phases
Compiler Abstractions

Optimizer Needs ...

We still haven’t talked about ...

... let’s talk about!

UNI
|

FREIBUN _

Jens Hoffmann Compiler optimization in C++

Compilation in phases

Generic view on compilation phases
Compiler Abstractions

Optimizer Needs ...

We still haven’t talked about ...

@ Need #2 is to have an IR that can be executed abstracily.

... let’s talk about!

UNI
|

FREIBUN _

Jens Hoffmann Compiler optimization in C++

Compilation in phases

Generic view on compilation phases
Compiler Abstractions

Optimizer Needs ...

We still haven’t talked about ...

@ Need #2 is to have an IR that can be executed abstracily.

@ Solution #2: Let compiler work on trees.

... let’s talk about!

UNI
|

FREIBUNT™

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

Compiler and Trees

Before 2003 GCC directly lowered the GIMPLE IR into a
statement-by-statement form and optimized then (RTL pass).

UNI
FREIBU..-

Jens Hoffmann Compiler optimization in C++

Compilation in phases

Generic view on compilation phases
Compiler Abstractions

Compiler and Trees

Before 2003 GCC directly lowered the GIMPLE IR into a
statement-by-statement form and optimized then (RTL pass).

Problem

Informations about functions as total or relations between
functions are lost.

UNI
FREIBU..-

Jens Hoffmann Compiler optimization in C++

Compilation in phases

Generic view on compilation phases
Compiler Abstractions

Compiler and Trees

Before 2003 GCC directly lowered the GIMPLE IR into a
statement-by-statement form and optimized then (RTL pass).
Problem

Informations about functions as total or relations between
functions are lost.

Solution

In GCC since 2003: Tree SSA project to simplify the RTL pass
and to implement high-level optimizers.

v

FREIBUL.?

z
5

Jens Hoffmann Compiler optimization in C++

Compilation in phases L .
Generic view on compilation phases

Compiler Abstractions

Tree SSA Example

@ SSA: Static Single Assignment

1 a = foo () 1 ay = fow i
2 h=a+10; Ehl_.J1+1'I:I
3 c= 5: 3 n;_l =
4 Tl =b + ¢ 4 Tly=by + e
5 if (a = T1) 5 if a, > T1))
& 6 {
7 T2 = b | 7 T2, = by [ay;
8 T3 =b*a 8 T3, = b, *a;
9 c=T2 + T3 8 ¢, = T2, + T3
10 b=b+t 10 by =by + 1;
11 } 11 }
12 bar {a, b, c); 12 by = gfby, byl
13 o3=0(cy ok %
14 bar {ag, by cy); g
NEET-h
zl.l.l
Figure: GIMPLE versus SSA o

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Outline

Q Optimization Strategies
@ Strategies on SSA Trees

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Overview

@ Optimizations that can be done ’on the fly’ while
transforming GIMPLE to SSA:

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Overview

@ Optimizations that can be done ’on the fly’ while
transforming GIMPLE to SSA:

e Constant propagation

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Overview

@ Optimizations that can be done ’on the fly’ while
transforming GIMPLE to SSA:
e Constant propagation
o Copy propagtion

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Overview

@ Optimizations that can be done ’on the fly’ while
transforming GIMPLE to SSA:
e Constant propagation
o Copy propagtion
e Redundancy elimination

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Overview

@ Optimizations that can be done ’on the fly’ while
transforming GIMPLE to SSA:
e Constant propagation
Copy propagtion
Redundancy elimination
Propagation of predicate expressions

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Overview

@ Optimizations that can be done ’on the fly’ while
transforming GIMPLE to SSA:
e Constant propagation
o Copy propagtion
e Redundancy elimination
Propagation of predicate expressions

@ Furhter optimizations implemented as separate passes:

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Overview

@ Optimizations that can be done ’on the fly’ while
transforming GIMPLE to SSA:
e Constant propagation
o Copy propagtion
e Redundancy elimination
e Propagation of predicate expressions
@ Furhter optimizations implemented as separate passes:
e Sparse Conditional Constant Propagation (CCP)

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Overview

@ Optimizations that can be done ’on the fly’ while
transforming GIMPLE to SSA:
e Constant propagation
o Copy propagtion
e Redundancy elimination
e Propagation of predicate expressions

@ Furhter optimizations implemented as separate passes:

e Sparse Conditional Constant Propagation (CCP)
e Partial Redundancy Elimination (PRE)

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Overview

@ Optimizations that can be done ’on the fly’ while
transforming GIMPLE to SSA:
e Constant propagation
o Copy propagtion
e Redundancy elimination
e Propagation of predicate expressions

@ Furhter optimizations implemented as separate passes:

e Sparse Conditional Constant Propagation (CCP)
e Partial Redundancy Elimination (PRE)
e Dead Code Elimination (DC)

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Constant propagation

@ When a constant assignment a; = C is found, it is stored in
a hash table.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Constant propagation

@ When a constant assignment a; = C is found, it is stored in
a hash table.

@ Successive occurrences of a; are replaced with C.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Constant propagation

@ When a constant assignment a; = C is found, it is stored in
a hash table.

@ Successive occurrences of a; are replaced with C.
@ Copy propagation similar.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Redundancy elimination

@ When an assignment of the form a; = b; @ ¢ is found, the
expression b; © ¢ is stored in a hash table.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Redundancy elimination

@ When an assignment of the form a; = b; @ ¢ is found, the
expression b; © ¢ is stored in a hash table.

@ Successive occurrences of b; © ¢k within the same
sub-tree, are replaced with a;.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Propagation of predicate expressions

@ When a conditional statement of the form if(a; == C) is
found, the assignment a; = C is inserted into a hash table.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Propagation of predicate expressions

@ When a conditional statement of the form if(a; == C) is
found, the assignment a; = C is inserted into a hash table.

@ When processing the "then" clause of the conditional,
successive occurences of a; are replaced with C in that
sub-tree.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Sparse conditional constant propagation (SCP)

@ SCP does constant/copy propagation and dead code
eliminations simultaneously/efficiently.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Sparse conditional constant propagation (SCP)

@ SCP does constant/copy propagation and dead code
eliminations simultaneously/efficiently.

@ Algorithm by Cooper and Torczon 2005.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Partial redundancy elimination (PRE)

1| if (condition) { 1| if (condition) {
/... /.
3 x =y + 42; 3] x=y+ 42
} z = x;
5| else { 5|}
/. else {
7 71
z =y + 42; zZ =y + 42;
ol 1/ ... 9| }
Figure: Partial Redundancy Figure: PRE optimization 55’
el
zl.l.l
o

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Dead code elimination (DCE)

Remove all statements in the program that have no effect on its
output.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

Outline

Q Optimization Strategies

@ Optimization in GCC

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

List of all Strategies in GCC 4.4.3

-falign-functions[=n] -falign-jumps|=n] -falign-labels[=n] -falign-loops[=n] -fassociative-math -fauto-inc-dec
-fbranch-probabilities -fbranch-target-load-optimize -fbranch-target-load-optimize2 -fbtr-bb-exclusive -fcaller-saves
-fcheck-data-deps -fconserve-stack -fcprop-registers -fcrossjumping -fese-follow-jumps -fese-skip-blocks
-fex-fortran-rules -fex-limited-range -fdata-sections -fdce -fdce -fdelayed-branch -fdelete-null-pointer-checks -fdse
-fdse -fearly-inlining -fexpensive-optimizations -ffast-math -ffinite-math-only -ffloat-store -fforward-propagate
-ffunction-sections -fgcse -fgcse-after-reload -fgcse-las -fgcse-Im -fgcse-sm -fif-conversion -fif-conversion2
-findirect-inlining -finline-functions -finline-functions-called-once -finline-limit=n -finline-small-functions -fipa-cp
-fipa-cp-clone -fipa-matrix-reorg -fipa-pta -fipa-pure-const -fipa-reference -fipa-struct-reorg -fipa-type-escape
-fira-algorithm=algorithm -fira-region=region -fira-coalesce -fno-ira-share-save-slots -fno-ira-share-spill-slots
-fira-verbose=n -fivopts -fkeep-inline-functions -fkeep-static-consts -floop-block -floop-interchange -floop-strip-mine
-fmerge-all-constants -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves -fmove-loop-invariants
-fmudflap -fmudflapir -fmudflapth -fno-branch-count-reg -fno-default-inline -fno-defer-pop -fno-function-cse

-fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole -fno-peephole2 -fno-sched-interblock

UNI
FREIBURG

-fno-sched-spec -fno-signed-zeros -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss

-fomit-frame-pointer -foptimize-register-move -foptimize-sibling-calls -fpeel-loops -fpredictive-commoning

Jens Hoffl Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

List of all Strategies in GCC 4.4.3

In the following we will discuss each of them ...

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

List of all Strategies in GCC 4.4.3

Just kidding. ...

UNI

Figure: Just Kidding

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

GCC’s optimization levels

The strategies above can be categorized as follows:

@ Strategies that do not increase the programs size and run
fast (-O1 option).

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

GCC’s optimization levels

The strategies above can be categorized as follows:
@ Strategies that do not increase the programs size and run
fast (-O1 option).
@ Strategies that do not increase the programs size and
need a plenty of time (-O2 option).

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

GCC’s optimization levels

The strategies above can be categorized as follows:
@ Strategies that do not increase the programs size and run
fast (-O1 option).
@ Strategies that do not increase the programs size and
need a plenty of time (-O2 option).

@ Strategies that do increase the programs size and need a
plenty of time (-O3 options).

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

GCC’s optimization levels

The strategies above can be categorized as follows:

@ Strategies that do not increase the programs size and run
fast (-O1 option).

@ Strategies that do not increase the programs size and
need a plenty of time (-O2 option).

@ Strategies that do increase the programs size and need a
plenty of time (-O3 options).

@ Strategies that do decrease the programs size (-Os option).

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

GCC’s optimization levels

The strategies above can be categorized as follows:

@ Strategies that do not increase the programs size and run
fast (-O1 option).

@ Strategies that do not increase the programs size and
need a plenty of time (-O2 option).

@ Strategies that do increase the programs size and need a
plenty of time (-O3 options).

@ Strategies that do decrease the programs size (-Os option).

@ Default: No optimization at all (-O0 option) for debugging.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Strategies on SSA Trees

Optimization Strategies Optimization in GCC

GCC’s optimization levels

The strategies above can be categorized as follows:

@ Strategies that do not increase the programs size and run
fast (-O1 option).

@ Strategies that do not increase the programs size and
need a plenty of time (-O2 option).

@ Strategies that do increase the programs size and need a
plenty of time (-O3 options).

@ Strategies that do decrease the programs size (-Os option).

@ Default: No optimization at all (-O0 option) for debugging.

@ -0O0 c -O1 ¢ -02 C -08.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Summary

Summary

@ Thanks to the GIMPLE language talking about compiler
optimization becomes language independant (in GCC).

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Summary

Summary

@ Thanks to the GIMPLE language talking about compiler
optimization becomes language independant (in GCC).

@ Since about 2003 GCC works with the Tree SSA pass
instead of directly compiling to RTL.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Summary

Summary

@ Thanks to the GIMPLE language talking about compiler
optimization becomes language independant (in GCC).

@ Since about 2003 GCC works with the Tree SSA pass
instead of directly compiling to RTL.

@ With its -Ox flags, GCC provides 4 optimization levels with
increasing optimization complexity.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Summary

Summary

@ Thanks to the GIMPLE language talking about compiler
optimization becomes language independant (in GCC).

@ Since about 2003 GCC works with the Tree SSA pass
instead of directly compiling to RTL.

@ With its -Ox flags, GCC provides 4 optimization levels with
increasing optimization complexity.

@ Outlook

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Summary

Summary

@ Thanks to the GIMPLE language talking about compiler
optimization becomes language independant (in GCC).

@ Since about 2003 GCC works with the Tree SSA pass
instead of directly compiling to RTL.

@ With its -Ox flags, GCC provides 4 optimization levels with
increasing optimization complexity.

@ Outlook

e Loop optimizations are a big field of subject. We haven't
talked about this yet.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

Summary

Summary

@ Thanks to the GIMPLE language talking about compiler
optimization becomes language independant (in GCC).

@ Since about 2003 GCC works with the Tree SSA pass
instead of directly compiling to RTL.

@ With its -Ox flags, GCC provides 4 optimization levels with
increasing optimization complexity.

@ Outlook
e Loop optimizations are a big field of subject. We haven't
talked about this yet. G
e What's going on in RTL, that is what low-level optimizations §
can be done? T2ET

o

Jens Hoffmann Compiler optimization in C++

For Further Reading

Appendix Figures

For Further Reading |

¥ Proceedings of the GCC Developers Summit 2003,
171-198.
Introduction to GENERIC, GIMPLE, Tree SSA.

@® C. Keith D., L. Torczon.
Engineering a Compiler.
Morgan Kaufmann, 2005

¥ http://gce.gnu.org/onlinedocs/gcc/Optimize-Options.html
Description of each optimization option in GCC

¥ http://gcee.gnu.org/onlinedocs/geeint/
GCC Internals Documentation

URG

> http://en.wikipedia.org/wiki/Static_singIe_assignment_formgg—
Wiki on SSA 2

Jens Hoffmann Compiler optimization in C++

For Further Reading

Appendix Figures

For Further Reading |l

¥ http://www.public.asu.edu/ kbai3/docs/Gimple.pdf
Ke Bai - GIMPLE In GCC

Presentation at the Department of Computer Science,
Arizona State University, 2010
>

www.phoronix.com/scan.php?page=article&item=gcc_45_benchn

Benchmarks on the new GCC 4.5.0

¥ http://gce.gnu.org/wiki/PythonFrontEnd
Python front end for GCC

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

For Further Reading

Appendix Figures

Figures |

@ Generic compiler on page 5: Wikipedia.

@ GCC passes and IRs on page 27: GCC internals
documentation.

@ Comparison between GENERIC and GIMPLE on page 42:
GCC summit 2003.

@ On page ??: GCC summit 2003.

UNI
|

FREIBURG

Jens Hoffmann Compiler optimization in C++

	Compilation in phases
	Generic view on compilation phases
	Compiler Abstractions

	Optimization Strategies
	Strategies on SSA Trees
	Optimization in GCC

	Summary
	Appendix
	Appendix
	
	

