
Compilation in phases
Optimization Strategies

Summary

Compiler optimization in C++

Jens Hoffmann

Chair of Algorithms and Data Structures
Albert-Ludwigs University Freiburg

Seminar Java vs. C++, winter semester 2010

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Outline

1 Compilation in phases
Generic view on compilation phases
Compiler Abstractions

2 Optimization Strategies
Strategies on SSA Trees
Optimization in GCC

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Outline

1 Compilation in phases
Generic view on compilation phases
Compiler Abstractions

2 Optimization Strategies
Strategies on SSA Trees
Optimization in GCC

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Outline

1 Compilation in phases
Generic view on compilation phases
Compiler Abstractions

2 Optimization Strategies
Strategies on SSA Trees
Optimization in GCC

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Compiler structure

Figure: Generic compiler

Frontend checks the
high-level source code in
terms of syntax and
semantics.
Middle-end is where the
optimizations take place.
Backend translates
intermediate
representation (IR) into
the target assembly code.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Compiler structure

Figure: Generic compiler

Frontend checks the
high-level source code in
terms of syntax and
semantics.
Middle-end is where the
optimizations take place.
Backend translates
intermediate
representation (IR) into
the target assembly code.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Compiler structure

Figure: Generic compiler

Frontend checks the
high-level source code in
terms of syntax and
semantics.
Middle-end is where the
optimizations take place.
Backend translates
intermediate
representation (IR) into
the target assembly code.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Compiler structure

Figure: Generic compiler

Frontend checks the
high-level source code in
terms of syntax and
semantics.
Middle-end is where the
optimizations take place.
Backend translates
intermediate
representation (IR) into
the target assembly code.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Compiler structure

Figure: Generic compiler

Frontend checks the
high-level source code in
terms of syntax and
semantics.
Middle-end is where the
optimizations take place.
Backend translates
intermediate
representation (IR) into
the target assembly code.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Compiler structure

Figure: Generic compiler

Frontend checks the
high-level source code in
terms of syntax and
semantics.
Middle-end is where the
optimizations take place.
Backend translates
intermediate
representation (IR) into
the target assembly code.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GCC compilation in multiple phases

1 Parsing pass
Turns the code in tokens.
Result is a language dependant IR.

2 Gimplification pass
Get a language independant IR.
In GCC target IR is the GIMPLE language.

3 Pass manager
Run individual passes in correct order.
Bookkeeping.

4 Tree SSA pass
Single Static Assignment form.
Pass optimizes on trees.

5 RTL pass
Register Transfer Language.
Pass optimizes on statements (near to assembler).

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GCC compilation in multiple phases

1 Parsing pass
Turns the code in tokens.
Result is a language dependant IR.

2 Gimplification pass
Get a language independant IR.
In GCC target IR is the GIMPLE language.

3 Pass manager
Run individual passes in correct order.
Bookkeeping.

4 Tree SSA pass
Single Static Assignment form.
Pass optimizes on trees.

5 RTL pass
Register Transfer Language.
Pass optimizes on statements (near to assembler).

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GCC compilation in multiple phases

1 Parsing pass
Turns the code in tokens.
Result is a language dependant IR.

2 Gimplification pass
Get a language independant IR.
In GCC target IR is the GIMPLE language.

3 Pass manager
Run individual passes in correct order.
Bookkeeping.

4 Tree SSA pass
Single Static Assignment form.
Pass optimizes on trees.

5 RTL pass
Register Transfer Language.
Pass optimizes on statements (near to assembler).

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GCC compilation in multiple phases

1 Parsing pass
Turns the code in tokens.
Result is a language dependant IR.

2 Gimplification pass
Get a language independant IR.
In GCC target IR is the GIMPLE language.

3 Pass manager
Run individual passes in correct order.
Bookkeeping.

4 Tree SSA pass
Single Static Assignment form.
Pass optimizes on trees.

5 RTL pass
Register Transfer Language.
Pass optimizes on statements (near to assembler).

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GCC compilation in multiple phases

1 Parsing pass
Turns the code in tokens.
Result is a language dependant IR.

2 Gimplification pass
Get a language independant IR.
In GCC target IR is the GIMPLE language.

3 Pass manager
Run individual passes in correct order.
Bookkeeping.

4 Tree SSA pass
Single Static Assignment form.
Pass optimizes on trees.

5 RTL pass
Register Transfer Language.
Pass optimizes on statements (near to assembler).

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GCC compilation in multiple phases

1 Parsing pass
Turns the code in tokens.
Result is a language dependant IR.

2 Gimplification pass
Get a language independant IR.
In GCC target IR is the GIMPLE language.

3 Pass manager
Run individual passes in correct order.
Bookkeeping.

4 Tree SSA pass
Single Static Assignment form.
Pass optimizes on trees.

5 RTL pass
Register Transfer Language.
Pass optimizes on statements (near to assembler).

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GCC compilation in multiple phases

1 Parsing pass
Turns the code in tokens.
Result is a language dependant IR.

2 Gimplification pass
Get a language independant IR.
In GCC target IR is the GIMPLE language.

3 Pass manager
Run individual passes in correct order.
Bookkeeping.

4 Tree SSA pass
Single Static Assignment form.
Pass optimizes on trees.

5 RTL pass
Register Transfer Language.
Pass optimizes on statements (near to assembler).

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GCC compilation in multiple phases

1 Parsing pass
Turns the code in tokens.
Result is a language dependant IR.

2 Gimplification pass
Get a language independant IR.
In GCC target IR is the GIMPLE language.

3 Pass manager
Run individual passes in correct order.
Bookkeeping.

4 Tree SSA pass
Single Static Assignment form.
Pass optimizes on trees.

5 RTL pass
Register Transfer Language.
Pass optimizes on statements (near to assembler).

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GCC compilation in multiple phases

1 Parsing pass
Turns the code in tokens.
Result is a language dependant IR.

2 Gimplification pass
Get a language independant IR.
In GCC target IR is the GIMPLE language.

3 Pass manager
Run individual passes in correct order.
Bookkeeping.

4 Tree SSA pass
Single Static Assignment form.
Pass optimizes on trees.

5 RTL pass
Register Transfer Language.
Pass optimizes on statements (near to assembler).

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GCC compilation in multiple phases

1 Parsing pass
Turns the code in tokens.
Result is a language dependant IR.

2 Gimplification pass
Get a language independant IR.
In GCC target IR is the GIMPLE language.

3 Pass manager
Run individual passes in correct order.
Bookkeeping.

4 Tree SSA pass
Single Static Assignment form.
Pass optimizes on trees.

5 RTL pass
Register Transfer Language.
Pass optimizes on statements (near to assembler).

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GCC compilation in multiple phases

1 Parsing pass
Turns the code in tokens.
Result is a language dependant IR.

2 Gimplification pass
Get a language independant IR.
In GCC target IR is the GIMPLE language.

3 Pass manager
Run individual passes in correct order.
Bookkeeping.

4 Tree SSA pass
Single Static Assignment form.
Pass optimizes on trees.

5 RTL pass
Register Transfer Language.
Pass optimizes on statements (near to assembler).

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GCC compilation in multiple phases

1 Parsing pass
Turns the code in tokens.
Result is a language dependant IR.

2 Gimplification pass
Get a language independant IR.
In GCC target IR is the GIMPLE language.

3 Pass manager
Run individual passes in correct order.
Bookkeeping.

4 Tree SSA pass
Single Static Assignment form.
Pass optimizes on trees.

5 RTL pass
Register Transfer Language.
Pass optimizes on statements (near to assembler).

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GCC compilation in multiple phases

1 Parsing pass
Turns the code in tokens.
Result is a language dependant IR.

2 Gimplification pass
Get a language independant IR.
In GCC target IR is the GIMPLE language.

3 Pass manager
Run individual passes in correct order.
Bookkeeping.

4 Tree SSA pass
Single Static Assignment form.
Pass optimizes on trees.

5 RTL pass
Register Transfer Language.
Pass optimizes on statements (near to assembler).

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GCC compilation in multiple phases

1 Parsing pass
Turns the code in tokens.
Result is a language dependant IR.

2 Gimplification pass
Get a language independant IR.
In GCC target IR is the GIMPLE language.

3 Pass manager
Run individual passes in correct order.
Bookkeeping.

4 Tree SSA pass
Single Static Assignment form.
Pass optimizes on trees.

5 RTL pass
Register Transfer Language.
Pass optimizes on statements (near to assembler).

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GCC compilation in multiple phases

1 Parsing pass
Turns the code in tokens.
Result is a language dependant IR.

2 Gimplification pass
Get a language independant IR.
In GCC target IR is the GIMPLE language.

3 Pass manager
Run individual passes in correct order.
Bookkeeping.

4 Tree SSA pass
Single Static Assignment form.
Pass optimizes on trees.

5 RTL pass
Register Transfer Language.
Pass optimizes on statements (near to assembler).

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GCC compilation in multiple phases

1 Parsing pass
Turns the code in tokens.
Result is a language dependant IR.

2 Gimplification pass
Get a language independant IR.
In GCC target IR is the GIMPLE language.

3 Pass manager
Run individual passes in correct order.
Bookkeeping.

4 Tree SSA pass
Single Static Assignment form.
Pass optimizes on trees.

5 RTL pass
Register Transfer Language.
Pass optimizes on statements (near to assembler).

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GCC language lowering

Figure: IR flow in GCC

Each phase lowers its IR closer to the machine.
GCC lowering: Parse Tree -> GENERIC -> GIMPLE ->
SSA -> RTL

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GCC language lowering

Figure: IR flow in GCC

Each phase lowers its IR closer to the machine.
GCC lowering: Parse Tree -> GENERIC -> GIMPLE ->
SSA -> RTL

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Outline

1 Compilation in phases
Generic view on compilation phases
Compiler Abstractions

2 Optimization Strategies
Strategies on SSA Trees
Optimization in GCC

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Optimizer Needs ...

Needs
Need #1 is to have a language independant IR.
Need #2 is to have an IR that can be executed abstractly.

Solutions
Solution #1: Let compiler have its own language
abstraction: GIMPLE.
Solution #2: Let compiler work with trees.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Optimizer Needs ...

Needs
Need #1 is to have a language independant IR.
Need #2 is to have an IR that can be executed abstractly.

Solutions
Solution #1: Let compiler have its own language
abstraction: GIMPLE.
Solution #2: Let compiler work with trees.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Optimizer Needs ...

Needs
Need #1 is to have a language independant IR.
Need #2 is to have an IR that can be executed abstractly.

Solutions
Solution #1: Let compiler have its own language
abstraction: GIMPLE.
Solution #2: Let compiler work with trees.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Optimizer Needs ...

Needs
Need #1 is to have a language independant IR.
Need #2 is to have an IR that can be executed abstractly.

Solutions
Solution #1: Let compiler have its own language
abstraction: GIMPLE.
Solution #2: Let compiler work with trees.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Optimizer Needs ...

Needs
Need #1 is to have a language independant IR.
Need #2 is to have an IR that can be executed abstractly.

Solutions
Solution #1: Let compiler have its own language
abstraction: GIMPLE.
Solution #2: Let compiler work with trees.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Optimizer Needs ...

Needs
Need #1 is to have a language independant IR.
Need #2 is to have an IR that can be executed abstractly.

Solutions
Solution #1: Let compiler have its own language
abstraction: GIMPLE.
Solution #2: Let compiler work with trees.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Need #1: GCC and Language Independency

Problem with language independent IRs

Language independant IRs are hairy to program for front-end
programmers.

Solution
GCC provides a
’close-to-the-program-front-end-target-language’
(CTTPFETL) that still can have language dependencies:
GENERIC.
First introduced with GCCs Java front-end around 2000.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Need #1: GCC and Language Independency

Problem with language independent IRs

Language independant IRs are hairy to program for front-end
programmers.

Solution
GCC provides a
’close-to-the-program-front-end-target-language’
(CTTPFETL) that still can have language dependencies:
GENERIC.
First introduced with GCCs Java front-end around 2000.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Need #1: GCC and Language Independency

Problem with language independent IRs

Language independant IRs are hairy to program for front-end
programmers.

Solution
GCC provides a
’close-to-the-program-front-end-target-language’
(CTTPFETL) that still can have language dependencies:
GENERIC.
First introduced with GCCs Java front-end around 2000.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Need #1: GCC and Language Independency

Problem with language independent IRs

Language independant IRs are hairy to program for front-end
programmers.

Solution
GCC provides a
’close-to-the-program-front-end-target-language’
(CTTPFETL) that still can have language dependencies:
GENERIC.
First introduced with GCCs Java front-end around 2000.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Need #1: GCC and GIMPLE

Problem with GENERIC
GCC optimizers do not work well with GENERIC.

Solution
GCC internally lowers GENERIC to its GIMPLE language.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Need #1: GCC and GIMPLE

Problem with GENERIC
GCC optimizers do not work well with GENERIC.

Solution
GCC internally lowers GENERIC to its GIMPLE language.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Need #1: GENERIC versus GIMPLE - An Example

Figure: Comparison between GENERIC (left) and GIMPLE (right)

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GENERIC versus GIMPLE- Abstract

GENERIC
The GENERIC syntax looks quite similar to C/C++!
This is why the C/C++ front-ends directly produce the
GIMPLE form.
But: Irregular in structure plus side effects.

→ Hard to have optimizations on GENERIC.
GIMPLE

Complex expressions broken down into
’I-can-not-break-this-down-anymore-expressions’
New variables for any of these atomic expressions.
GIMPLE representation is more regular in structure.

→ GIMPLE is ideal to do optimizations on it.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GENERIC versus GIMPLE- Abstract

GENERIC
The GENERIC syntax looks quite similar to C/C++!
This is why the C/C++ front-ends directly produce the
GIMPLE form.
But: Irregular in structure plus side effects.

→ Hard to have optimizations on GENERIC.
GIMPLE

Complex expressions broken down into
’I-can-not-break-this-down-anymore-expressions’
New variables for any of these atomic expressions.
GIMPLE representation is more regular in structure.

→ GIMPLE is ideal to do optimizations on it.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GENERIC versus GIMPLE- Abstract

GENERIC
The GENERIC syntax looks quite similar to C/C++!
This is why the C/C++ front-ends directly produce the
GIMPLE form.
But: Irregular in structure plus side effects.

→ Hard to have optimizations on GENERIC.
GIMPLE

Complex expressions broken down into
’I-can-not-break-this-down-anymore-expressions’
New variables for any of these atomic expressions.
GIMPLE representation is more regular in structure.

→ GIMPLE is ideal to do optimizations on it.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GENERIC versus GIMPLE- Abstract

GENERIC
The GENERIC syntax looks quite similar to C/C++!
This is why the C/C++ front-ends directly produce the
GIMPLE form.
But: Irregular in structure plus side effects.

→ Hard to have optimizations on GENERIC.
GIMPLE

Complex expressions broken down into
’I-can-not-break-this-down-anymore-expressions’
New variables for any of these atomic expressions.
GIMPLE representation is more regular in structure.

→ GIMPLE is ideal to do optimizations on it.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GENERIC versus GIMPLE- Abstract

GENERIC
The GENERIC syntax looks quite similar to C/C++!
This is why the C/C++ front-ends directly produce the
GIMPLE form.
But: Irregular in structure plus side effects.

→ Hard to have optimizations on GENERIC.
GIMPLE

Complex expressions broken down into
’I-can-not-break-this-down-anymore-expressions’
New variables for any of these atomic expressions.
GIMPLE representation is more regular in structure.

→ GIMPLE is ideal to do optimizations on it.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GENERIC versus GIMPLE- Abstract

GENERIC
The GENERIC syntax looks quite similar to C/C++!
This is why the C/C++ front-ends directly produce the
GIMPLE form.
But: Irregular in structure plus side effects.

→ Hard to have optimizations on GENERIC.
GIMPLE

Complex expressions broken down into
’I-can-not-break-this-down-anymore-expressions’
New variables for any of these atomic expressions.
GIMPLE representation is more regular in structure.

→ GIMPLE is ideal to do optimizations on it.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GENERIC versus GIMPLE- Abstract

GENERIC
The GENERIC syntax looks quite similar to C/C++!
This is why the C/C++ front-ends directly produce the
GIMPLE form.
But: Irregular in structure plus side effects.

→ Hard to have optimizations on GENERIC.
GIMPLE

Complex expressions broken down into
’I-can-not-break-this-down-anymore-expressions’
New variables for any of these atomic expressions.
GIMPLE representation is more regular in structure.

→ GIMPLE is ideal to do optimizations on it.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GENERIC versus GIMPLE- Abstract

GENERIC
The GENERIC syntax looks quite similar to C/C++!
This is why the C/C++ front-ends directly produce the
GIMPLE form.
But: Irregular in structure plus side effects.

→ Hard to have optimizations on GENERIC.
GIMPLE

Complex expressions broken down into
’I-can-not-break-this-down-anymore-expressions’
New variables for any of these atomic expressions.
GIMPLE representation is more regular in structure.

→ GIMPLE is ideal to do optimizations on it.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GENERIC versus GIMPLE- Abstract

GENERIC
The GENERIC syntax looks quite similar to C/C++!
This is why the C/C++ front-ends directly produce the
GIMPLE form.
But: Irregular in structure plus side effects.

→ Hard to have optimizations on GENERIC.
GIMPLE

Complex expressions broken down into
’I-can-not-break-this-down-anymore-expressions’
New variables for any of these atomic expressions.
GIMPLE representation is more regular in structure.

→ GIMPLE is ideal to do optimizations on it.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

GENERIC versus GIMPLE- Abstract

GENERIC
The GENERIC syntax looks quite similar to C/C++!
This is why the C/C++ front-ends directly produce the
GIMPLE form.
But: Irregular in structure plus side effects.

→ Hard to have optimizations on GENERIC.
GIMPLE

Complex expressions broken down into
’I-can-not-break-this-down-anymore-expressions’
New variables for any of these atomic expressions.
GIMPLE representation is more regular in structure.

→ GIMPLE is ideal to do optimizations on it.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Optimizer Needs ...

We still haven’t talked about ...

Needs
Need #1 is to have a language independant IR.
Need #2 is to have an IR that can be executed abstractly.

Solutions
Solution #1: Let compiler have its own language
abstraction: GENERIC & GIMPLE.
Solution #2: Let compiler work on trees.

... let’s talk about!

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Optimizer Needs ...

We still haven’t talked about ...

Needs
Need #1 is to have a language independant IR.
Need #2 is to have an IR that can be executed abstractly.

Solutions
Solution #1: Let compiler have its own language
abstraction: GENERIC & GIMPLE.
Solution #2: Let compiler work on trees.

... let’s talk about!

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Optimizer Needs ...

We still haven’t talked about ...

Needs
Need #1 is to have a language independant IR.
Need #2 is to have an IR that can be executed abstractly.

Solutions
Solution #1: Let compiler have its own language
abstraction: GENERIC & GIMPLE.
Solution #2: Let compiler work on trees.

... let’s talk about!

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Compiler and Trees

Before 2003 GCC directly lowered the GIMPLE IR into a
statement-by-statement form and optimized then (RTL pass).

Problem
Informations about functions as total or relations between
functions are lost.

Solution
In GCC since 2003: Tree SSA project to simplify the RTL pass
and to implement high-level optimizers.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Compiler and Trees

Before 2003 GCC directly lowered the GIMPLE IR into a
statement-by-statement form and optimized then (RTL pass).

Problem
Informations about functions as total or relations between
functions are lost.

Solution
In GCC since 2003: Tree SSA project to simplify the RTL pass
and to implement high-level optimizers.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Compiler and Trees

Before 2003 GCC directly lowered the GIMPLE IR into a
statement-by-statement form and optimized then (RTL pass).

Problem
Informations about functions as total or relations between
functions are lost.

Solution
In GCC since 2003: Tree SSA project to simplify the RTL pass
and to implement high-level optimizers.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Generic view on compilation phases
Compiler Abstractions

Tree SSA Example

SSA: Static Single Assignment

Figure: GIMPLE versus SSA

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Outline

1 Compilation in phases
Generic view on compilation phases
Compiler Abstractions

2 Optimization Strategies
Strategies on SSA Trees
Optimization in GCC

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Overview

Optimizations that can be done ’on the fly’ while
transforming GIMPLE to SSA:

Constant propagation
Copy propagtion
Redundancy elimination
Propagation of predicate expressions

Furhter optimizations implemented as separate passes:
Sparse Conditional Constant Propagation (CCP)
Partial Redundancy Elimination (PRE)
Dead Code Elimination (DC)

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Overview

Optimizations that can be done ’on the fly’ while
transforming GIMPLE to SSA:

Constant propagation
Copy propagtion
Redundancy elimination
Propagation of predicate expressions

Furhter optimizations implemented as separate passes:
Sparse Conditional Constant Propagation (CCP)
Partial Redundancy Elimination (PRE)
Dead Code Elimination (DC)

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Overview

Optimizations that can be done ’on the fly’ while
transforming GIMPLE to SSA:

Constant propagation
Copy propagtion
Redundancy elimination
Propagation of predicate expressions

Furhter optimizations implemented as separate passes:
Sparse Conditional Constant Propagation (CCP)
Partial Redundancy Elimination (PRE)
Dead Code Elimination (DC)

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Overview

Optimizations that can be done ’on the fly’ while
transforming GIMPLE to SSA:

Constant propagation
Copy propagtion
Redundancy elimination
Propagation of predicate expressions

Furhter optimizations implemented as separate passes:
Sparse Conditional Constant Propagation (CCP)
Partial Redundancy Elimination (PRE)
Dead Code Elimination (DC)

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Overview

Optimizations that can be done ’on the fly’ while
transforming GIMPLE to SSA:

Constant propagation
Copy propagtion
Redundancy elimination
Propagation of predicate expressions

Furhter optimizations implemented as separate passes:
Sparse Conditional Constant Propagation (CCP)
Partial Redundancy Elimination (PRE)
Dead Code Elimination (DC)

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Overview

Optimizations that can be done ’on the fly’ while
transforming GIMPLE to SSA:

Constant propagation
Copy propagtion
Redundancy elimination
Propagation of predicate expressions

Furhter optimizations implemented as separate passes:
Sparse Conditional Constant Propagation (CCP)
Partial Redundancy Elimination (PRE)
Dead Code Elimination (DC)

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Overview

Optimizations that can be done ’on the fly’ while
transforming GIMPLE to SSA:

Constant propagation
Copy propagtion
Redundancy elimination
Propagation of predicate expressions

Furhter optimizations implemented as separate passes:
Sparse Conditional Constant Propagation (CCP)
Partial Redundancy Elimination (PRE)
Dead Code Elimination (DC)

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Overview

Optimizations that can be done ’on the fly’ while
transforming GIMPLE to SSA:

Constant propagation
Copy propagtion
Redundancy elimination
Propagation of predicate expressions

Furhter optimizations implemented as separate passes:
Sparse Conditional Constant Propagation (CCP)
Partial Redundancy Elimination (PRE)
Dead Code Elimination (DC)

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Overview

Optimizations that can be done ’on the fly’ while
transforming GIMPLE to SSA:

Constant propagation
Copy propagtion
Redundancy elimination
Propagation of predicate expressions

Furhter optimizations implemented as separate passes:
Sparse Conditional Constant Propagation (CCP)
Partial Redundancy Elimination (PRE)
Dead Code Elimination (DC)

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Constant propagation

When a constant assignment ai = C is found, it is stored in
a hash table.
Successive occurrences of ai are replaced with C.
Copy propagation similar.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Constant propagation

When a constant assignment ai = C is found, it is stored in
a hash table.
Successive occurrences of ai are replaced with C.
Copy propagation similar.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Constant propagation

When a constant assignment ai = C is found, it is stored in
a hash table.
Successive occurrences of ai are replaced with C.
Copy propagation similar.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Redundancy elimination

When an assignment of the form ai = bj ⊕ ck is found, the
expression bj ⊕ ck is stored in a hash table.
Successive occurrences of bj ⊕ ck within the same
sub-tree, are replaced with ai .

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Redundancy elimination

When an assignment of the form ai = bj ⊕ ck is found, the
expression bj ⊕ ck is stored in a hash table.
Successive occurrences of bj ⊕ ck within the same
sub-tree, are replaced with ai .

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Propagation of predicate expressions

When a conditional statement of the form if (ai == C) is
found, the assignment ai = C is inserted into a hash table.
When processing the "then" clause of the conditional,
successive occurences of ai are replaced with C in that
sub-tree.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Propagation of predicate expressions

When a conditional statement of the form if (ai == C) is
found, the assignment ai = C is inserted into a hash table.
When processing the "then" clause of the conditional,
successive occurences of ai are replaced with C in that
sub-tree.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Sparse conditional constant propagation (SCP)

SCP does constant/copy propagation and dead code
eliminations simultaneously/efficiently.
Algorithm by Cooper and Torczon 2005.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Sparse conditional constant propagation (SCP)

SCP does constant/copy propagation and dead code
eliminations simultaneously/efficiently.
Algorithm by Cooper and Torczon 2005.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Partial redundancy elimination (PRE)

1 i f (c o n d i t i o n) {
/ / . . .

3 x = y + 42;
}

5 else {
/ / . . .

7 }
z = y + 42;

9 / / . . .

Figure: Partial Redundancy

1 i f (c o n d i t i o n) {
/ / . . .

3 x = y + 42;
z = x ;

5 }
else {

7 / / . . .
z = y + 42;

9 }

Figure: PRE optimization

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Dead code elimination (DCE)

Remove all statements in the program that have no effect on its
output.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

Outline

1 Compilation in phases
Generic view on compilation phases
Compiler Abstractions

2 Optimization Strategies
Strategies on SSA Trees
Optimization in GCC

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

List of all Strategies in GCC 4.4.3

-falign-functions[=n] -falign-jumps[=n] -falign-labels[=n] -falign-loops[=n] -fassociative-math -fauto-inc-dec

-fbranch-probabilities -fbranch-target-load-optimize -fbranch-target-load-optimize2 -fbtr-bb-exclusive -fcaller-saves

-fcheck-data-deps -fconserve-stack -fcprop-registers -fcrossjumping -fcse-follow-jumps -fcse-skip-blocks

-fcx-fortran-rules -fcx-limited-range -fdata-sections -fdce -fdce -fdelayed-branch -fdelete-null-pointer-checks -fdse

-fdse -fearly-inlining -fexpensive-optimizations -ffast-math -ffinite-math-only -ffloat-store -fforward-propagate

-ffunction-sections -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgcse-sm -fif-conversion -fif-conversion2

-findirect-inlining -finline-functions -finline-functions-called-once -finline-limit=n -finline-small-functions -fipa-cp

-fipa-cp-clone -fipa-matrix-reorg -fipa-pta -fipa-pure-const -fipa-reference -fipa-struct-reorg -fipa-type-escape

-fira-algorithm=algorithm -fira-region=region -fira-coalesce -fno-ira-share-save-slots -fno-ira-share-spill-slots

-fira-verbose=n -fivopts -fkeep-inline-functions -fkeep-static-consts -floop-block -floop-interchange -floop-strip-mine

-fmerge-all-constants -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves -fmove-loop-invariants

-fmudflap -fmudflapir -fmudflapth -fno-branch-count-reg -fno-default-inline -fno-defer-pop -fno-function-cse

-fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole -fno-peephole2 -fno-sched-interblock

-fno-sched-spec -fno-signed-zeros -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss

-fomit-frame-pointer -foptimize-register-move -foptimize-sibling-calls -fpeel-loops -fpredictive-commoning

-fprefetch-loop-arrays -fprofile-correction -fprofile-dir=path -fprofile-generate -fprofile-generate=path -fprofile-use

-fprofile-use=path -fprofile-values -freciprocal-math -fregmove -frename-registers -freorder-blocks

-freorder-blocks-and-partition -freorder-functions -frerun-cse-after-loop -freschedule-modulo-scheduled-loops

-frounding-math -frtl-abstract-sequences -fsched2-use-superblocks -fsched2-use-traces -fsched-spec-load

-fsched-spec-load-dangerous -fsched-stalled-insns-dep[=n] -fsched-stalled-insns[=n] -fschedule-insns

-fschedule-insns2 -fsection-anchors -fsee -fselective-scheduling -fselective-scheduling2 -fsel-sched-pipelining

-fsel-sched-pipelining-outer-loops -fsignaling-nans -fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-wide-types

-fstack-protector -fstack-protector-all -fstrict-aliasing -fstrict-overflow -fthread-jumps -ftracer -ftree-builtin-call-dce

-ftree-ccp -ftree-ch -ftree-copy-prop -ftree-copyrename -ftree-dce -ftree-dominator-opts -ftree-dse -ftree-fre

-ftree-loop-im -ftree-loop-distribution -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize

-ftree-parallelize-loops=n -ftree-pre -ftree-reassoc -ftree-sink -ftree-sra -ftree-switch-conversion -ftree-ter

-ftree-vect-loop-version -ftree-vectorize -ftree-vrp -funit-at-a-time -funroll-all-loops -funroll-loops

-funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops -fvariable-expansion-in-unroller

-fvect-cost-model -fvpt -fweb -fwhole-program -fuse-ld

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

List of all Strategies in GCC 4.4.3

In the following we will discuss each of them ...

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

List of all Strategies in GCC 4.4.3

Figure: Just Kidding

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

GCC’s optimization levels

The strategies above can be categorized as follows:
Strategies that do not increase the programs size and run
fast (-O1 option).
Strategies that do not increase the programs size and
need a plenty of time (-O2 option).
Strategies that do increase the programs size and need a
plenty of time (-O3 options).
Strategies that do decrease the programs size (-Os option).
Default: No optimization at all (-O0 option) for debugging.
-O0 ⊂ -O1 ⊂ -O2 ⊂ -O3.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

GCC’s optimization levels

The strategies above can be categorized as follows:
Strategies that do not increase the programs size and run
fast (-O1 option).
Strategies that do not increase the programs size and
need a plenty of time (-O2 option).
Strategies that do increase the programs size and need a
plenty of time (-O3 options).
Strategies that do decrease the programs size (-Os option).
Default: No optimization at all (-O0 option) for debugging.
-O0 ⊂ -O1 ⊂ -O2 ⊂ -O3.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

GCC’s optimization levels

The strategies above can be categorized as follows:
Strategies that do not increase the programs size and run
fast (-O1 option).
Strategies that do not increase the programs size and
need a plenty of time (-O2 option).
Strategies that do increase the programs size and need a
plenty of time (-O3 options).
Strategies that do decrease the programs size (-Os option).
Default: No optimization at all (-O0 option) for debugging.
-O0 ⊂ -O1 ⊂ -O2 ⊂ -O3.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

GCC’s optimization levels

The strategies above can be categorized as follows:
Strategies that do not increase the programs size and run
fast (-O1 option).
Strategies that do not increase the programs size and
need a plenty of time (-O2 option).
Strategies that do increase the programs size and need a
plenty of time (-O3 options).
Strategies that do decrease the programs size (-Os option).
Default: No optimization at all (-O0 option) for debugging.
-O0 ⊂ -O1 ⊂ -O2 ⊂ -O3.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

GCC’s optimization levels

The strategies above can be categorized as follows:
Strategies that do not increase the programs size and run
fast (-O1 option).
Strategies that do not increase the programs size and
need a plenty of time (-O2 option).
Strategies that do increase the programs size and need a
plenty of time (-O3 options).
Strategies that do decrease the programs size (-Os option).
Default: No optimization at all (-O0 option) for debugging.
-O0 ⊂ -O1 ⊂ -O2 ⊂ -O3.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Strategies on SSA Trees
Optimization in GCC

GCC’s optimization levels

The strategies above can be categorized as follows:
Strategies that do not increase the programs size and run
fast (-O1 option).
Strategies that do not increase the programs size and
need a plenty of time (-O2 option).
Strategies that do increase the programs size and need a
plenty of time (-O3 options).
Strategies that do decrease the programs size (-Os option).
Default: No optimization at all (-O0 option) for debugging.
-O0 ⊂ -O1 ⊂ -O2 ⊂ -O3.

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Summary

Thanks to the GIMPLE language talking about compiler
optimization becomes language independant (in GCC).
Since about 2003 GCC works with the Tree SSA pass
instead of directly compiling to RTL.
With its -Ox flags, GCC provides 4 optimization levels with
increasing optimization complexity.

Outlook
Loop optimizations are a big field of subject. We haven’t
talked about this yet.
What’s going on in RTL, that is what low-level optimizations
can be done?

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Summary

Thanks to the GIMPLE language talking about compiler
optimization becomes language independant (in GCC).
Since about 2003 GCC works with the Tree SSA pass
instead of directly compiling to RTL.
With its -Ox flags, GCC provides 4 optimization levels with
increasing optimization complexity.

Outlook
Loop optimizations are a big field of subject. We haven’t
talked about this yet.
What’s going on in RTL, that is what low-level optimizations
can be done?

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Summary

Thanks to the GIMPLE language talking about compiler
optimization becomes language independant (in GCC).
Since about 2003 GCC works with the Tree SSA pass
instead of directly compiling to RTL.
With its -Ox flags, GCC provides 4 optimization levels with
increasing optimization complexity.

Outlook
Loop optimizations are a big field of subject. We haven’t
talked about this yet.
What’s going on in RTL, that is what low-level optimizations
can be done?

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Summary

Thanks to the GIMPLE language talking about compiler
optimization becomes language independant (in GCC).
Since about 2003 GCC works with the Tree SSA pass
instead of directly compiling to RTL.
With its -Ox flags, GCC provides 4 optimization levels with
increasing optimization complexity.

Outlook
Loop optimizations are a big field of subject. We haven’t
talked about this yet.
What’s going on in RTL, that is what low-level optimizations
can be done?

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Summary

Thanks to the GIMPLE language talking about compiler
optimization becomes language independant (in GCC).
Since about 2003 GCC works with the Tree SSA pass
instead of directly compiling to RTL.
With its -Ox flags, GCC provides 4 optimization levels with
increasing optimization complexity.

Outlook
Loop optimizations are a big field of subject. We haven’t
talked about this yet.
What’s going on in RTL, that is what low-level optimizations
can be done?

Jens Hoffmann Compiler optimization in C++

Compilation in phases
Optimization Strategies

Summary

Summary

Thanks to the GIMPLE language talking about compiler
optimization becomes language independant (in GCC).
Since about 2003 GCC works with the Tree SSA pass
instead of directly compiling to RTL.
With its -Ox flags, GCC provides 4 optimization levels with
increasing optimization complexity.

Outlook
Loop optimizations are a big field of subject. We haven’t
talked about this yet.
What’s going on in RTL, that is what low-level optimizations
can be done?

Jens Hoffmann Compiler optimization in C++

Appendix
For Further Reading
Figures

For Further Reading I

Proceedings of the GCC Developers Summit 2003,
171-193.
Introduction to GENERIC, GIMPLE, Tree SSA.

C. Keith D., L. Torczon.
Engineering a Compiler.
Morgan Kaufmann, 2005

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
Description of each optimization option in GCC

http://gcc.gnu.org/onlinedocs/gccint/
GCC Internals Documentation

http://en.wikipedia.org/wiki/Static_single_assignment_form
Wiki on SSA

Jens Hoffmann Compiler optimization in C++

Appendix
For Further Reading
Figures

For Further Reading II

http://www.public.asu.edu/ kbai3/docs/Gimple.pdf
Ke Bai - GIMPLE In GCC
Presentation at the Department of Computer Science,
Arizona State University, 2010

www.phoronix.com/scan.php?page=article&item=gcc_45_benchmarks&num=1

Benchmarks on the new GCC 4.5.0

http://gcc.gnu.org/wiki/PythonFrontEnd
Python front end for GCC

Jens Hoffmann Compiler optimization in C++

Appendix
For Further Reading
Figures

Figures I

Generic compiler on page 5: Wikipedia.

GCC passes and IRs on page 27: GCC internals
documentation.

Comparison between GENERIC and GIMPLE on page 42:
GCC summit 2003.

On page ??: GCC summit 2003.

Jens Hoffmann Compiler optimization in C++

	Compilation in phases
	Generic view on compilation phases
	Compiler Abstractions

	Optimization Strategies
	Strategies on SSA Trees
	Optimization in GCC

	Summary
	Appendix
	Appendix
	
	

