
Java Virtual Machine
Session 3, Wednesday November 3rd, 2010

Robin Schirrmeister

Seminar Java vs. C++
Wintersemester 2010/2011

Outline

● Basic Idea
● Reasons
● More Details
● Bytecode
● Advantages and Disadvantages
● Benchmarking Problems
● Benchmarking Framework
● Performance Tips / different Implementations

Quellcode
class Student
{
 public int matrNr;
 Student(int matrNr)
 {
 this.matrNr = matrNr;
 }
....
}

Bytecode
class Student extends
java.lang.Object{
public int matrNr;
Student(int);
 Code:
 0: aload_0
 1: invokespecial #1;
 4: aload_0
 5: iload_1
 6: putfield #2;
 9: return
}

com
piled

 to

Is loaded and

verified by

Compiles B
yte

code

and executes it
 on

Basic Idea of the Java Virtual Machine

JVM

Reasons for the Java Virtual Machine

● Cross-Platform
– Machine-independent Bytecode
– „Write once, run anywhere“

● Security Reasons
– Execute an unknown program, don't damage the PC

● Restricted applets
● Code safety

Java Virtual Machine – more precise

● JVM not a program, but a specification how to load
and run bytecode files

● => different JVMs for different Platforms and for
same platform by different vendors

● Modern JVMs have many optimizations
(JIT/Hotspot...)

● Bytecode can be compiled from any language, not
just Java! (e.g. Jython, Jruby, Jscheme, Groovy,
Scala)

Overview JVM Specification Structure

● Important Parts of the JVM Specification:
– Structure of the class files
– Bytecode instructions and data types
– Security requirements (verification)
– Data areas
– Rules for threads and concurrency

Data Areas

● Stack
– Local variables of the functions

● Heap
– Instances of objects

● Method Area
– Code of the methods

● Runtime Constant Pool
– Class variables, e.g. static variables

Methods in the JVM

● Method Data Structures

Bytecode and Verification

● Bytecode structure
● Decompilation with javap -c [-private]
● Compilation possible with Jasmin
● Bytecode instructions

http://java.sun.com/docs/books/jvms/second_edition/html/ClassFile.doc.html
http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

Advantages/Disadvantages of JVM
Concept

● Advantages
– Cross-platform, machine-independent
– Higher code safety
– Advanced optimizations possible for the JVM

● Disadvantages
– Extra-compilation step does slow performance down (big

question: how much? :))
– Unable to use certain OS-APIs directly
– Unable to hand-optimize as much

Problems with Benchmarking

● JVMs today have many complicated optimizations
=> Benchmarking to get meaningful results is very
tricky

● First problem: The time-measurement used
– System.currentTimeMillis has platform dependent-

resolution, e.g. on Windows XP multicore ~15 ms,
System.nanoTime can be better, both can have own
overhead

Problems with Benchmarking 2

● Warmup Time
– JVMs often load classes only on first use => first

time a task is run can be much slower than next
times

– Similarly JIT-Compilations happens only after a lot
of runs => necessary to run code for many times to
get meaningful performance evaluation

● Dynamic Optimization
– Even after many runs, it might happen a method gets

compiled or an already compiled method gets
interpreted

Problems with Benchmarking 3

● On Stack Replacement
– Sometimes can actually slow things down

● Dead Code Elimination
– Difficult to tell when code will get eliminated

● Memory Deallocation
– Not necessarily predictable

● Cache and other hardware effects

Problems with Benchmarking 4

● Fast Fourier Transformation on different data sizes

Benchmark Framework

● Deals with some of the mentioned problems by:
– Garbage collecting completely before the benchmark
– Running task until there is no more new JIT

compilation
– After reaching steady state, run task many times and

take average, also record mean and standard
deviation

Performance / Tuning Tips

● Command-Line-Parameters for JVM:
– -server for slow start, high performance, -client for

fast start, slower performance
– -Xms initial heap size, -Xmx maximum heap size,

-Xss stack size per thread
● Use newer libraries, especially if old ones are only

there for backwards compatibility
– e.g. use NIO-classes instead of old IO-classes

● Profiling and analyzing
– jconsole, -Xprof

Different JVM Implementations

● Most prominent JVM is Sun Hotspot JVM
● Other Major JVM Implementations usually

optimized for specific hardware:
– Oracle JRockit for Oracle Hardware
– HP-UX for Risc-HP-Architectures
– IBM J9 for IBM Hardware

● JVM developed at Uni Freiburg: TakaTuka!
– Lead developer: Faisal Aslam
– For small wireless devices, very small JVM size

(can run on devices with 4 KB RAM)

Sources
● http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html (JVM Specification)

● http://en.wikipedia.org/wiki/Java_Virtual_Machine (Wikipedia Article on the general concept)

● http://en.wikipedia.org/wiki/Java_performance (Some informations about java performance, always
disputed ;))

● http://java.sun.com/javase/technologies/performance.jsp (Sun/Oracle center for informations about Java
Performance)

● http://www.ibm.com/developerworks/java/library/j-benchmark1.html (IBM Paper about benchmarking
issues with java and the mentionjed benchmarking framework)

● http://scribblethink.org/Computer/javaCbenchmark.html (numerical benchmarks c and java)

● http://www.oracle.com/technetwork/java/hotspotfaq-138619.html (FAQ about Hotspot JVM)

● http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/tprf_tunejvm.html
(JVM Tuning Tips by IBM)

● http://www.ibm.com/developerworks/ibm/library/it-haggar_bytecode/ (IBM Paper about Bytecode)

● http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings (Listings of all bytecode instructions)

● http://sourceforge.net/apps/mediawiki/takatuka/index.php?title=Main_Page (TakaTuka Homepage)

http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Java_performance
http://java.sun.com/javase/technologies/performance.jsp
http://www.ibm.com/developerworks/java/library/j-benchmark1.html
http://scribblethink.org/Computer/javaCbenchmark.html
http://www.oracle.com/technetwork/java/hotspotfaq-138619.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/tprf_tunejvm.html
http://www.ibm.com/developerworks/ibm/library/it-haggar_bytecode/
http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings
http://sourceforge.net/apps/mediawiki/takatuka/index.php?title=Main_Page

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

