Java versus C++
Seminar WS 2010/ 2011

Session 2, Wednesday October 27, 2010
(Machine code generation from C / C++)

Prof. Dr. Hannah Bast
Chair for Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Overview of my talk

m Machine code generation from C / C++
— Basic principle
— Some demos
m Machine code
— Short history, x86 and RISC
— X86 general-purpose registers
— x86 basic instructions
— x86 memory allocation: heap and stack
— x86 / AMDG64 function calling
— x86 / AMDG64 streaming registers

Machine code generation from C / C++

m Basic principle of any interpreter / compiler:
— Take each line from the code

— And translate it to an equivalent sequence of machine
code instructions

— [Show live example]

— Quite easy in principle: we could write a compiler for
basic C (variables, while, if, functions, 1/0) in a week

— It wouldn't produce very efficient code though ...
m The key to producing efficient code:

— Do not translate the code line by line, but consider
appropriate blocks of code together - talk on optimization

— [Continue live example]

To understand any of this, we need to understand
how machine code works ... hence this talk

A history of machine code (x86-biased)

m 8-bit architectures

— 1972: Intel 8008 (the world's first 8-bit microprocessor)
— 1974: Intel 8080 (added some 16-bit operations)
— 1976: Zilog Z80 (the most successful one, still in use today)

m 16-bit architectures
— 1978: Intel 8086 (the first member of the x86 family)

m 32-bit architectures
— 1985: Intel 80386 aka 1386 (backwards-compatible with 8086)
— 1993: Intel Pentium (again, backwards-compatible)

m 64-bit architectures referred to as x86-64 or x64
— 2003: AMD 64, Intel 64 (backwards-compatible with x86)

The vast majority of desktop computers, laptops,
and servers today run x86 / x64 machine code

RISC / Load-store architecture

m RISC = Reduced Instruction Set Computing

— Basic idea: very small and simple instruction set, enabling
faster implementation of hardware

— In practice: operations load/store for transfer registers <
memory; all other operations on registers only

— Most code is for x86, however, which is not RISC (although
some ideas have been picked up over the years, e.g. Pentium)

— Overproportionally more work went into the x86 optimziation
- little performance difference between x86 and RISC today

— Famous RISC example: the ARM architecture (32-bit)
» Game Boy, BlackBerry, Palm, iPod, iPhone, iPad, G1, ...

» SO beware that some of the things we find in this seminar
may or may not be applicable for these devices

X86 Registers

m Intel 8086 registers (16-bit)
— AX, BX, CX, DX: general-purpose registers (with special
usage as "accumulator”, "base", "counter"”, "data")
— Sl, DI: source index, destination index
— SP, BP: stack pointer, base pointer
— CS, DS, SS, ES: segment registers (code, data, stack, extra)

m Intel 80836 registers (32-bit) "segmentation”
— EAX, EBX, ECX, EDX, etc. [E = extended] - talk on C++
— additional segment registers FS and GS memory mngment

— eight 64-bit streaming registers MMX0, MMX1, ...
m AMD Opteron (64-bit)
— RAX, RBX, RCX, RDX, etc. [R = 7]
— additional 64-bit registers R8, R9, ..., R15
— Sixteen 128-bit streaming registers XMMO, XMM1, ...

X86 Basic instructions 1/2

m Assigment

— mov X, Y : assign the value of Xto Y

— Here, and for many commands, X and Y can be registers,
e.g. Y%rax, or absolute memory locations, e.g. label, or
memory locations pointed to by a register, e.g. 4(%rsp).

m Arithmetic and bitwise operations
— add, sub, mul, div, inc (increment), dec (decrement), ...
— and, or, xor, sal (shift left), sar (shift right), ...
m Suffixes
— no suffix = 16 bits, | = 32 bits ("long"), g = 64 bits ("quad")
— for example: mov, movl, movq, add, addl, addq, ...

X86 Basic instructions 2/2

m Stack operations

— push X : push X on stack (decreases SP = stack pointer)
— pop X : pop X from stack (increases SP = stack pointer)

m Comparisons and jumps
—cmp X, Y : compare X and Y and remember < oder > or =
—Jje X, jne X, jl X : jump to X if equal, not equal, less, ...
— Jmp X : jump unconditionally to X
m Function calling
— call X : push instruction pointer and jump to X
— ret : pop instruction pointer and jump to that address
— enter X : create a new stack frame with room for X bytes
— leave : restore the old stack frame

Memory allocation: heap and stack

m Heap
— General-purpose memory allocation
— At any time we may get a request for any number of bytes
— At any time we may no longer need any number of bytes

— The part of memory where this is organized is called the
heap, auf Deutsch Haufen - talk on C++ memory allocation

m Stack

— Memory allocation for global and local variables, function
parameters, and function results

— Has the LIFO property: last object in, first object out
— Therefore we can organize these objects on a stack (Stapel)

FLH EAP — &— ST %

Memory allocation on the stack

5’%‘0\& /&YO\/WUL 6
TN <—— 3TACK

I | K
T T i) 0
&F(D /tSPQ Sﬁc B

WO\MF TSk froma AT

N @}QQL) S}A/DY}'V\MC/\\O\MSL LY

comi .
| bo ablcchs sy o

M s

10

x86 Function calling 1/3

m C-Style calling convention (most common)

— Stack frame = part of stack that belongs to the function we
are currently in, left end = SP < right end = BP

— Push the function arguments on the stack, from right to left
— Then call pushes the instruction pointer (IP) on the stack
— The first action of the called function (the callee) must be
» to push the BP on the stack, and then
» set BP = SP, effectively starting a new stack frame
— Before the callee returns, must pop BP of the stack again
— Then ret pops the IP from the stack and jumps there
— Now we are back in the calling function with its stack frame
— Now calling function must pop the arguments it pushed

11

x86 Function calling 2/3

m C-Style calling convention example

12

x86 Function calling 3/3

m Standard call (e.g. the Win32 API uses this)

— Very similar to C-style call
— Assumes fixed number of arguments for each function call

— Again caller pushes arguments on the stack, but callee is
now responsible for removing them from the stack again

— Advantage: less work everytime we call the function
— Disadvantage: wrong number of arguments is fatal now

m Shortcuts
— enter 10 = push BP; mov SP—BP; sub 10, SP
— leave = mov BP—SP; pop BP
— pusha = push AX, CX, DX, BX, SP, BP, SI, DI
— popa = pop DI, SI, BP, SP, BX, DX, CX, AX

13

AMDG64 Function calling

m Arguments no longer passed via the stack
— But via registers (AMD64 has many of them)
— In particular for system calls
— This gives significant speedups in practice

14

SSE

m SSE = Streaming SIMD Extensions

— Motivation: carry out the same instruction for a number
of operators at the same time (SIMD = Single instruction,
multiple data)

— Large (nowadays 128-bit) registers XMMO, XMM1, ...
— Originally 8 such registers, AMD64 now has 16

— Example: eight 4-byte integers x1, x2, x3, x4 (stored at
address X) and y1, y2, y3, y4 (stored at address Y), then
compute x1+yl, x2+y2, x3+y3, x4+y4 (to be stored at
address Z) with just three instructions as follows

movaps XMMO, X
addps XMMO, Y
movaps Z, XMMO

15

Literature / Links

m x86 and RISC
— http://en.wikipedia.org/wiki/X86_architecture
— http://en.wikipedia.org/wiki/RISC
m X86 registers and instruction set
— http://en.wikipedia.org/wiki/X86#x86_reqisters
— http://en.wikipedia.org/wiki/X86 _instruction_listings
m x86 Linux assembler tutorial (the basics, very nice)
— http://www.m-hoeppner.de/projects/asm_ws.pdf
m x86 function calling, C-style vs. Standard
— http://unixwiz.net/techtips/win32-callconv-asm.html
m SSE = Streaming SIMD Extensions
— http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

16

17

