Search Engines October 26, 2009

Johannes A. Stork WS 09/10 Page 1 of |Z|

Exercise Sheet 11

Exercise 1

See http://vulcano.informatik.uni-freiburg.de /wiki/teaching /SearchEnginesWS0910/StudentIntros

Exercise 2

o A collection of all RFCs from http://www.rfc-editor.org/download.html has been used. The collec-
tion contains 5540 documents (490 MB ASCII text).

e The content of different german news websites has been retrieve with the programm harvestman.
The websites where:
— http://www.stern.de/,
— http://www.derstandard.at/,
— http://www.sueddeutsche.de/,
— http://www.focus.de/,
— http://www.tagesschau.de/,
— http://www.ftd.de/,
— http://www.taz.de/,
— http://www.heute.de/,
— http://www.welt.de/,
— http://www.nzz.ch/ and
— http://www.zeit.de/.

The collection containts 5362 documents.

o Text files from http://www.textfiles.com /| have been used. The collection contains 48799 documents
with (1.1 GB ASCII text).

Only tokens composed of letters have been regarded.

Exercise 3

Uploaded on web page, see there.

Exercise 4
Algorithm: The algorithm is explaned in regard to the current implementation in Java. The implemen-
tation does execute a complete search as nothing more precise is stated on the exercise sheet.

As each two-word with one hit queries shall be found, look at each pair (4,) of words from the index,

where 17 is lexicographical greater than j.
for(int i = 0; i < index.size(); i++) {

for(int j = i + 1; j < index.size(); j++) {

1Version 1.1

http://vulcano.informatik.uni-freiburg.de/wiki/teaching/SearchEnginesWS0910/StudentIntros
http://www.rfc-editor.org/download.html
http://www.textfiles.com/

Search Engines October 26, 2009

Johannes A. Stork WS 09/10 Page 2 of |Z|

IndexElement il = index.get(i);
IndexElement i2 = index.get(j);
if ('il.content.equals(i2.content)) {

Vector<String> hits =
doItersection(il.fileNames, i2.fileNames);
if (hits.size() == 1) {

/// Pair found

System.out.println(il.content + " -- " + i2.content);

}r 1}

Calculate the inersection of both lists. The lists are sorted so we can iterate over both list at once and

in each step shift one or both iterators until finished with one of both lists.

/// Prepare return value

Vector<String> intersection = new Vector<String>();
/// Calculate intersection of the hit lists
Iterator<String> itl = fileNameListl.iterator();
Iterator<String> it2 = fileNameList2.iterator();
/// Initial values

String s1 = ""; String s2 = "";

/// Compare metric value

int ¢ = sl.compareTo(s2);

/*x

* ¢ == 0: sl eq s2, ¢ < 0: sl lex_< 82, c > 0: sl lex_> s2
ES

* (Qsee Java API

*/

while(

(c == 0 && itl.hasNext() && it2.hasNext()) ||

(c < 0 && it1l.hasNext()) ||

(c > 0 && it2.hasNext())) {

if(c == 0) {
/// Hits are equal
/// Move the iterators
sl = itl.next();
s2 = it2.next();
} else if(c < 0) {
/// sl lex_< s2
sl = itl.next();
} else {
/// sl lex_> s2
s2 = it2.next();
}
c = sl.compareTo(s2);
if(c == 0) {
/// Intersection found

intersection.add(s1);

Search Engines October 26, 2009

Johannes A. Stork WS 09/10 Page 3 of |Z|

Analysis: There are T_l) ordered pairs (4,7) of words in a set N of n word. Let h; be the number

of files that contain word number i. The list of files H;, that contain word number 7 is ordered. In the

worst case both lists for a pair of words (4, j) must be iterated in

O (h; + hy)

Therefore the overall complexity of regarding all such pairs is

o200) =0 (S5 ny

i=1 j=i+1

Exercise 5

The plot of the frequencies is shown below. Multiple data sets have been regared for comparison.

10000 : T T
H RFC data
german news website collection data
www.textfiles.org data --------
8000 | .
] B
S eo00 i i .
9 Y
5
[&]
(&)
o
o] :
< '
E 4000 5 E
c K
2000 | .
0 T | -“”"-"-""""'""""i'---------------............._
0 5000 10000 15000 20000

occurrences position

Figure 1: Frequency to position plot

The constant factor € from Zipf’s law has been estimated by least squares fitting for each collections.
The error was defined as

2
N+1 1
error (g) = E e-N-=— occ(i)
:) N——
i=1
from Zipf from data set

where N is the number of words occurences in the collection and occ (i) is the number of the over all

occurrences of the i—most frequent word (Vi : occ (i) > occ (i + 1)).

Johannes A. Stork Search Engines October 26, 2009

WS 09/10 Page 4 of [4
Collection ‘ €
RFC 0.105
news websites 0.076

www.textfiles.com | 0.076

	Exercise Sheet 1Version 1.1
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

