
Chair for Algorithms
and Data Structures

Prof. Dr. Hannah Bast
Marjan Celikik

Search Engines WS 09/10
http://ad.informatik.uni-freiburg.de/teaching

Final Exam — Solutions

Solution for Task 1 (Ranking)

1.1 There are twelve different words and 5 documents. Here is the 12× 5 term-document matrix.
The entries are all zero or one, since each document contains each word at most once.

every 1 1 1 1 0
breath 1 0 0 0 0
you 1 1 1 1 1
take 1 0 0 1 0
move 0 1 0 0 0
make 0 1 0 0 0
bond 0 0 1 0 0
break 0 0 1 0 0
step 0 0 0 1 0
Ill 0 0 0 0 1
be 0 0 0 0 1
watching 0 0 0 0 1

1.2 Each document as well as the query have four non-zero entries which are all 1. By L2-
normalization these all becomes 0.5 (because 4 · 0.52 = 1). Here is the normalized matrix with
the normalized query vector.

every 0.5 0.5 0.5 0.5 0 0.5
breath 0.5 0 0 0 0 0
you 0.5 0.5 0.5 0.5 0.5 0.5
take 0.5 0 0 0.5 0 0
move 0 0.5 0 0 0 0
make 0 0.5 0 0 0 0.5
bond 0 0 0.5 0 0 0.5
break 0 0 0.5 0 0 0
step 0 0 0 0.5 0 0
Ill 0 0 0 0 0.5 0
be 0 0 0 0 0.5 0
watching 0 0 0 0 0.5 0

The cosine similarities with documents 1, 2, 3, 4, and 5 are then 0.5, 0.75, 0.75, 0.5, and 0.25,
respectively. With ties broken by doc id, we then obtain the document ranking 2, 3, 1, 4, 5.

1.3 If all five documents are presented to the user the precision is 80% (4 documents out of the
five shown are relevant) and the recall is 100% (all 4 relevant documents are in the ones shown).
The F -measure is therefore 1/(5/4 + 1) = 8/9 = 88.89%. Recall 50% is achieved already by the
first two hits (2 out of 4 relevant documents found), and the precision there is 100% because both
of the these hits are relevant.

1.4 By doubling each word occurrence in each document, all entries in the term-document matrix
get multiplied by 2. After L2-normalization we obtain the exact same matrix as if we hadn’t
doubled each word. Therefore the cosine scores and the ranking for each query remain the same.

Solution for Task 2 (Compression / Entropy)

2.1 By simple counting we get na = 2, nb = 4, nc = 8, and nd = 2. The corresponding relative
frequencies are na/n = 1/8, nb/n = 1/4, nc/n = 1/2, and nd/n = 1/8.

2.2 The entropy of the distribution is

1/8 · log2 8 + 1/4 · log2 4 + 1/2 · log2 2 + 1/8 · log2 8 = 3/8 + 2/4 + 1/2 + 3/8 = 7/4 = 1.75.

2.3 A prefix-free code would be a : 110, b : 10, c : 0, d : 111. Since the length of the code for
letter σ is exactly log2(n/nσ), the expected code length is exactly the entropy computed in 2.2,
that is, 1.75.

2.4 Let pσ be the probability for letter σ. The probability of the string above being generated
with these probabilities is p2

a · p4
b · p8

c · p2
d, and taking the logarithm we obtain the log likelihood

L = 2 ln pa + 4 ln pb + 8 ln pc + 2 ln pd. We want to maximize L under the side constraint pa + pb +
pc + pd = 1.

Writing the side constraint as 1− pa− pb− pc− pd = 0 and adding the LHS with a factor of λ to
L we obtain:

2 ln pa + 4 ln pb + 8 ln pc + 2 ln pd + λ · (1− pa − pb − pc − pd).

Setting the partial derivatives with respect to each of the pσ to zero, we obtain that pa/2 = pb/4 =
pc/8 = pd/2 = 1/λ. Together with the side constraint this gives us λ = n = 16, which in turn
gives us pσ = nσ/n, as claimed.

Solution for Task 3 (List intersection)

3.1 Here is the method in C++:

void intersect(const vector<int>& A, const vector<int>& B, vector<int>* C) {
assert(C != NULL);
assert(C->size() == 0);
size_t i = 0;

size_t j = 0;
while (i < A.size() && j < B.size()) {
if (A[i] == B[j]) { C.push_back(A[i]); ++i; ++j; }
else if (A[i] < B[j]) { ++i; }
else { ++j; }

}
}

3.2 Here is an example of lists with skip pointers, where the skip pointers help a lot. For this
example, N = 100, and m = 2. The skip pointer array is the two numbers given at the beginning
of each line.

A: 0 1 57 98

B: 0 9 1 2 3 4 5 6 7 8 9

We start with the first element from list A. Skip pointer 1 for B tells us that the smallest element
in list B that is 1 · 100/2 = 50 is at position 9, that is, one after the last element of the list, that
is, there is no element in list B which is ≥ 50, and hence we know already at this point that the
intersection must be empty.

3.3 Here is an example of lists with skip pointers, where the skip pointers do not help at all. Again,
N = 100, and m = 2, and the skip pointer array is the two numbers given at the beginning of
each line.

A: 0 4 10 20 30 40 50 60 70 80 90

B: 0 4 10 20 30 40 50 60 70 80 90

The only point where the skip pointers might help is when we reach element 50 in the first list.
Then skip pointer 1 from list B tells us that we can skip to the element with value 50 in list B.
But at that point we have reached the element just one before (with value 40) already anyway,
and so we don’t skip anything here.

3.4 Here is the method in C++:

void intersectWithSkipPointers(const vector<int>& A, const vector<int>& B,
const vector<int>& AS, const vector<int>& BS,
vector<int>* C) {

assert(result != NULL);
assert(result.size() == 0);
size_t i = 0;
size_t j = 0;
size_t k = 0;
size_t is = 0;
size_t js = 0;
while (i < A.size() && j < B.size()) {
if (A[i] == B[j]) { C.push_back(A[i]; ++i; ++j; }

else if (A[i] < B[j]) {
++i;
while (is + 1 < AS.size() && A[AS[is+1]] <= B[j]) { ++is; }
if (AS[is] > i) { i = AS[is]; }

}
else {
++j;
while (js + 1 < BS.size() && B[BS[js+1]] <= A[i]) { ++js; }
if (BS[js] > j) { j = BS[js]; }

}
}

}

Solution for Task 4 (Edit distance)

4.1 Here is the dynamic programming table, filled using the trivial equality that ED(ε, z) =
ED(z, ε) = |z| and the recursion from the lecture. According to the table, the edit distance
between orange and grape is 3.

ε g r a p e

ε 0 1 2 3 4 5

o 1 1
↖

2 3 4 5

r 2 2 1
↖

2 3 4

a 3 3 2 1
↖

2 3

n 4 4 3 2
↑

2
↖

3

g 5 4 4 3 3
↖↑

3

e 6 5 5 4 4 3
↖

4.2 The arrows in the table above show from which previous value a value may be derived in the
recursion. According to these arrows, there are two different optimal paths from the upper left
to the lower right. These paths are:

1. R(1, g), R(4, p), D(5)
2. R(1, g), D(4), R(4, p)

Here R(i, x) means replace the character at position i by x, I(i, x) means insert character x just
after position i, and D(i) means delete the character at position i.

4.3 Let T1 be a sequence of ED(x1, y1) transformations that transform x1 into y1. Let T2 be a
sequence of ED(x2, y2) transformations that transform x2 into y2. Then T1 will also transform
x1y1 into x2y1, and then applying T2 with all positions shifted to the right by |x2| will transform

x2y1 into x2y2. We have thus constructed a sequence of ED(x1, y2) +ED(x2, y2) transformations
that transform x1y1 into x2y2 and hence ED(x1y1, x2y2) ≤ ED(x1, y1) +ED(x2, y2) (there could
be an even better sequence, and, as we show in 4.4, there indeed sometimes is).

4.4 Let z be an arbitrary string of length at least 1. Let x1 = z and x2 = ε and y1 = ε and
y2 = z. Then ED(x1, y1) = |x1| = |z| and ED(x2, y2) = |y2| = |z| and the sum of the two is
2|z|. On the other hand x1y1 and x2y2 are both exactly z and so ED(x1y1, x2y2) = 0, which for
non-empty z is strictly less than 2|z|.

Solution for Task 5 (Classification)

5.1 By simple counting we get Pr(W = a|C = A) = 10/15 = 2/3, Pr(W = b|C = A) = 5/15 =
1/3, Pr(W = a|C = B) = 6/18 = 1/3, Pr(W = b|C = B) = 12/18 = 2/3, Pr(C = A) = 3/6 =
1/2, and Pr(C = B) = 3/6 = 1/2.

5.2 For a given record, we predict that class c which maximizes Pr(C = c)·
∏

w Pr(W = w|C = c).
For the string aaa this is 1/2 · (2/3)3 for class A and 1/2 · (1/3)3 for class B and so the prediction
is A. For the string bbb this is 1/2 · (1/3)3 for class A and 1/2 · (2/3)3 for class B and so the
prediction is A.

5.3 Consider an arbitrary string and let na the number of a s in it, and nb the number of b s.
Then Pr(C = c) ·

∏
Pr(W = w|C = c) is pA := 1/2 · (2/3)na · (1/3)nb for class A and pB :=

1/2 · (1/3)na · (2/3)nb for class B. Now pA/pB = 2na/2nb and this is > 1 if na > nb and < 1 if
na < nb (and = 1 if na = nb, that is, in that case Naive Bayes does not help tp decide between A
and B).

5.4 We observe that for the values of the priors in 5.1 it does not matter how the letters are
distributed over the strings that are assigned to class A (and the same holds for class B), it is
just the counts that matter. Therefore our priors remain exactly the same if we replace the first
string aba by abb and the second string baabaaa by aaabaaa. With the same priors, the statement
from 5.3 also holds unchanged, and so, based on these priors, abb will be predicted to be from
class B, although in the training set it was assigned to class A.

Solution for Task 6 (Clustering)

6.1 In the first round, we start with cluster centroids 1 and 21. The points closer to 1 are 1, 4, 7, 8
and so they will form a cluster in the first round. The points closer to 21 are 12, 15, 21 and so
they will form the other cluster in the first round. Recomputing the cluster centroids gives us
(1 + 4 + 7 + 8)/4 = 5 and (12 + 15 + 21)/3 = 16.

On the second round, we hence start with cluster centroids 5 and 16. The points closer to 5 are
again 1, 4, 7, 8, and the points closer to 16 are again 12, 15, 21. This gives the same clusters as in
the first round, and so a recomputation of the cluster centroids gives again 5 and 16.

Any round after this one will give the same clusters and centroids.

6.2 We denote our n points by x1, . . . , xn and without loss of generality we assume that they
are in sorted ascending order, that is, x1 ≤ x2 ≤ · · · ≤ xn. The n − 1 differences which are the

basis for ONE-DEE’s clustering decision are then di = xi+1 − xi, for i = 1, . . . , n− 1. Now if we
multiply each xi by the same constant factor α, then all differences di also get multiplied by that
same constant factor (simply because α · xi+1 − α · xi = α · (xi+1 − xi)). Therefore the set of i of
the k largest di does not change, and hence we obtain the exact same clustering.

N ote: We tacitly assumed here that in the case of ties (equal differences) we break the tie in a
way that does not depend on the absolute value of the di. A natural way to break ties would be
to prefer the difference with smaller id (that is, the difference of the leftmost points), and that
rule indeed does not depend on the value of the differences.

6.3 Observe that by the way ONE-DEE works, whenever two points x and y are in the same
cluster, than also all points with values in the interval [x, y] are in the same cluster. This implies
that not all partitionings are possible. For example, consider the input sequence 1, 2, 3. Then
there is no way that we get the clustering { {1, 3}, {2} }.
N ote: This depends on how we assume the input is given. If we demand the input is given in
sorted order, than the above argument is correct. If the input can be given in any order, than
ONE-DEE in fact satisfies richness. For the example above, if we want the clustering {x1, x3}
and {x2}, we can just set x1 = 1, x3 = 2, and x2 = 5.

6.4 Here is the method in C++. Note that the number of clusters is implicitly given by the
number of vectors in the result vector of vectors (the clusters).

void oneDeeClustering(const vector<int>& X, vector<vector<int> >* result) {
assert(clusters != NULL);
int k = clusters.size();
int n = X.size();
assert(n > 0);
// Compute the n-1 differences and sort them.
vector<int> diffs(n - 1);
sort(X.begin(), X.end());
for (int i = 0; i < n - 1; ++i) { diffs[i] = X[i+1] - X[i]; }
sort(diffs.begin(), diffs.end());
// Now scan the points from left to right and fill the result.
int j = 0;
for (int i = 0; i < n; ++i) {
if (j > 0 && j + 1 < k && i > 0 && X[i] - X[i-1] >= diffs[k-1]) { ++j; }
(*result)[j].push_back(X[i]);

}
}

