
Chair for Algorithms
and Data Structures

Prof. Dr. Hannah Bast
Marjan Celikik

Search Engines WS 09/10
http://ad.informatik.uni-freiburg.de/teaching

Exercise Sheet 9
complete until Thursday, January 14th

Exercise 1

Characterize the set of all invalid UTF-8 multi-byte sequences. If you think about it, this boils

down to saying which bytes cannot occur as the first byte in a UTF-8 multi-byte sequence, and

which bytes cannot occur as a second / third / fourth byte in a UTF-8 multi-byte sequence. You

should of course justify your answer and not just claim things.

Exercise 2

Write the following program in either Java or C++. Generate a random sequence of n bytes,

where n is an input parameter. Then go over the string, and using your characterization from

Exercise 1, replace as few characters as possible such that the resulting string is completely valid

UTF-8. Make an effort to write efficient code. In any case, your program should run in O(n) time.

(Note: “as few characters as possible” is not meant in a mathematical optimal sense, it’s just so

you avoid extremes like replacing all characters with ASCII code ≥ 128 by zero.)

Exercise 3

If you wrote the program for Exercise 1 in Java, now write the same program in C++. If you

wrote it in C++, now write it in Java. Again, make an effort to write efficient code.

Exercise 4

Write the program from Exercise 1 in a script language. You may choose between Perl, Python,

and PHP. Again, make an effort to write efficient code.

Exercise 5

Run all three programs for n = 103, 106, 109. Measure the running time for each program and

each setting of n, averaged over 10 runs in each case. Measure only the time for the actual string

repair, not the time for generating the random sequence. Summarize your results in a table with

3 columns (one for each programming language) and 3 rows (one for each setting of n). Briefly

discuss your results.


