
Search Engines
WS 2009 / 2010

Lecture 1, Thursday October 22nd, 2009

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

Department of Computer Science
University of Freiburg

Overview of this Lecture

Introduction
– a bit about myself

– the kind of work we do in our groupg p

– teaching style, project after the course ends

SearchSearch
– parsing

– building an inverted indexbuilding an inverted index

– querying an inverted index

– a simple space and time analysisa simple space and time analysis

Exercises
go over Exercise Sheet 1 explain course Wiki– go over Exercise Sheet 1, explain course Wiki

About myselfy

Education
– Ph.D. at Saarland University, 1999

– researcher (W2) at the MPI for Informatics, Saarbrücken() ,

– researcher (W2) at MMCI Cluster of Excellence, Saarbrücken

– professor (W3) in Freiburg since September 2009p () g p

Real work
– worked at Siemens a long time agoworked at Siemens a long time ago

– consulted for many (search engine) companies

– worked at Google Zürich for the last 1 ½ yearsworked at Google Zürich for the last 1 ½ years

Research interests
I do and like what I call Applied Algorithmics– I do and like what I call Applied Algorithmics

CompleteSearch Demop

Developed by our group since 2005 public demos

Show + explain the following

– smart + complex searches but still very fast comparison– smart + complex searches, but still very fast comparison

– show variety of collections / applications

user interface show JavaScript source– user interface, show JavaScript source

– TCP traffic, show via FireBug / CS Infobox

b (h) h l– web server (Apache), show access log

– middleware code (PHP), show access log

– backend, show server log for DBLP

– CompleteSearch code, and the algorithms behind

You will learn about all of this in this lecture !

Web Search vs. Domain-Specific Searchp

Web Search

– ranking is extremely important

– recall is not an issue for popular queries and hopeless forrecall is not an issue for popular queries and hopeless for
many expert queries

– Spam, spam, spam, spam, spam, spam, spam, spam, …p , p , p , p , p , p , p , p ,

– very limited resources for fancy stuff

Domain-Specific SearchDomain Specific Search

– recall is important example

S i t i– Spam is not an issue

– more resources to do fancy stuff (still has to be fast though)

Google is great on Web Search, we do Domain-Specific Search

Searching by Scanning (grep)g y g (g p)

That’s what a Unix / Linux grep does

It’s not so bad, a modern computer can …

scan 100 MB from disk per second– … scan 100 MB from disk per second

– … scan 1 GB of memory per second

l b dHowever grep is line-based

– finds lines that match a given pattern

– but there are extensions which do Google-like search,
for example, agrep

Parsing / Tokenizationg

Conceptually simple:

– just break a given text into words / tokens

But:But:

–

i h h Ã¶ b i^M i MÃ¶h– ich schwÃ¶re bei^M meiner MÃ¶hre …

– Donaudampfschifffahrtsgesellschaft

– stemming: for example, search eggs, find egg

for the exercises you can do something simple

The Inverted Index

Idea

– like the index in the back of a book

– but for *every* word that occursbut for every word that occurs

Specifically

f d i th ll ti li t f th id f th– for every word in the collection, a list of the ids of the
documents containing it (called inverted list)

informatik: Doc12 Doc57 Doc59 Doc61 Doc77informatik: Doc12, Doc57, Doc59, Doc61, Doc77, …

Construction

– it’s basically one big sort: parsing outputs the word
occurrences sorted by document and position, for the
inverted index we need it sorted by word show exampleinverted index we need it sorted by word show example

Index Construction = Sortingg

Doc1 Doc2

What a stupid
document

Another stupid
documentddocument. ddocument.

what 1 a 1what 1
a 1
stupid 1
d 1

a 1
another 2
document 1
d 2

sorting
document 1
another 2
stupid 2

document 2
stupid 1
stupid 2

g

stupid 2
document 2

stupid 2
what 1

Alternatively, use Hashingy, g

Have a hash map words list of doc ids
– in C++: hash_map<string, vector<int> >

– whenever you encounter a word for the first time,
insert it into a hash map with an empty listinsert it into a hash map with an empty list

– append subsequent occurrences to that list

C l it h N t t l b f dComplexity, where N = total number of word occurrences
– Sorting takes time O(N · log N)

– Hashing takes constant time per word, hence O(n)

– Still it’s not so clear which approach is better, why?

each hash operation is likely to be a cache miss

hashing only works when the index fits in memory

more about this in one of the next lectures

Space Analysisp y

Total size of the inverted index?

– one inverted list entry per word occurrence

– but we have an id instead of a full wordbut we have an id instead of a full word

– that already gives some kind of compression

– later in the course we will compress even more– later in the course we will compress even more

– size of an index = 10 – 20% of whole collection

Querying an inverted indexQ y g

Example query: informatik freiburg

– fetch the two inverted lists

– intersect themintersect them

informatik: Doc 12, Doc14, Doc27, Doc54, Doc 55, …

freiburg: Doc 5 Doc 12 Doc 13 Doc14 Doc67freiburg: Doc 5, Doc 12, Doc 13, Doc14, Doc67, …

intersection Doc 12, Doc14, …

Effi iEfficiency

– important that the lists are sorted by doc id

– then cost of intersection = O(log k · sum of list sizes)

– why the log k?

Intersection of multiple listsp

Assume we have three lists
informatik: Doc 12, Doc14, Doc27, Doc54, Doc 55, …

freiburg: Doc 5, Doc 12, Doc 13, Doc14, Doc67, …

master: Doc 7, Doc 12, Doc14, Doc 38, Doc 72, …

Algorithm:
– for each list maintain the current position in the list, and the

doc id at that position in a priority queue

– at each step, find those of the current positions with the
smallest entry, and advance that position show with lists above

with a priority queue this operation takes log k time where k is– with a priority queue this operation takes log k time, where k is
the number of items in the queue (here: the number of lists)

– Note: a trivial implementation of a priority queue (always scanNote: a trivial implementation of a priority queue (always scan
all items to find the smallest element) would take time k

How long are the inverted listsg

Zipf’s law:

– The i-th most frequent word in the collection occurs
approximately ε · N · 1 / i times, for some constant ε
and N = total num of word occurrences

– Exercise: verify this for your collection. What is your ε ?

So with k query words with ranks r1, …, rk :

– the total length of the lists is ε · N · Σ 1 / rithe total length of the lists is ε N Σ 1 / ri

– let’s compute how much this is in expectation …

