Search Engines WS 2009 / 2010

Lecture 11, Thursday January 21st, 2010 (Text Classification with Naïve Bayes)

> Prof. Dr. Hannah Bast Chair of Algorithms and Data Structures Department of Computer Science University of Freiburg

REIBURG

Overview of Today's Lecture

UNI FREIBURG

- Learn how to do text classification
 - for example, for a given paper title, decide whether the paper is from a theory conference or from a search engine conference
 - we will learn the simplest of all methods: Naive Bayes
 - also some mathematical foundations
- But before
 - another nice demo of what a method like latent semantic indexing can achieve and how it works ...

Demo for LSI, PLSI, etc.

 \blacksquare Recall the intuition of the matrices U and V

- columns of U are the "concepts"
- columns of V are the mix of concepts per document

Here is a nice tool showing this for real collections

INI

Text Classification

Consider the following paper titles

- A nearly optimal oracle for avoiding failed vertices and edgesSTOCOn iterative intelligent medical searchSIGIRGuilt by association as a search principleSIGIRList decoding tensor products and interleaved codesSTOCOn dynamic range reporting in one dimensionSTOCProbabilistic Latent Semantic IndexingSIGIR
- We want to tell from the titles alone
 - which one of these are STOC papers (the top theory conference)
 - and which ones are SIGIR papers (the top search conference)
 - Idea: use the invididual terms to predict whether STOC or SIGIR
 - e.g. "search" makes SIGIR more likely, "vertices" speaks for STOC

How to make a formal algorithm from this idea?

"Naive Bayes" Classification

Three basic steps

- STEP 1: decide on certain features and represent each record wrt to these features
 - we will take the words as features
 - other possible features \rightarrow later slide
- STEP 2: for each feature "learn" the likeliness / probability of that feature for each class
 - for example Pr(SIGIR | search) = 0.8
- STEP 3: from these learned probabilities, compute the likeliness / probability of each class for a new record, e.g.
 - Pr(SIGIR | Document Expansion for Speech Retrieval) = 0.7
 - Pr(STOC | Document Expansion for Speech Retrieval) = 0.3

How do we get "Probabilitites" ?

We assume the following random process

- for generating a single record / document with m words
- pick class c with probability p_c , where $\sum_c p_c = 1$
- pick the i-th word as w with probability p_{wc} , where $\sum_{w} p_{wc} = 1$
- we make the following strong assumption
 - each word chosen independently of the other words
 - very unrealistic indeed why?
 - hence the "Naive" in Naive Bayes
- However unrealistic ...
 - now we have well-defined probabilities to compute with

Crash Course: Conditional Probabilities

Bayes Theorem

- let A and B be events in a probability space Ω
- denote by Pr(A | B) the probability of A n B in the space B
- then $Pr(A \mid B) := Pr(A \mid B) / Pr(B)$
- and $Pr(A | B) \cdot Pr(B) = Pr(B | A) \cdot Pr(A)$
- For a good intuition, assume Ω is a finite set
 - from which we pick a random element X with $Pr(X = x) = 1/|\Omega|$

For a new document D we want to compute

- $Pr(C = c | W_1 = w_1 n \dots n W_m = w_m)$ for each class c where w_i is the i-th word of D
- and then pick that class for which this probability is largest argmax_c $Pr(C = c | W_1 = w_1 n ... n W_m = w_m)$
- by our independence assumptions + Bayes this is equal to $argmax_{c} Pr(C = c) \cdot \Pi_{i=1,...,m} Pr(W_{i} = w_{i} | C = c)$
- proof on next slide ...

UNI FREI

Proof that ...

9

- We need the following prior probabilities
 - Pr(C = c) (the likeliness of each class)
 - Pr(W = w | C = c) (the likeliness of each word for each class)
 - we estimate these from a test set for which we already know the classes
- The following looks very natural
 - let T be our test set, and T_c the set of documents from class c
 - then Pr(C = c) := |Tc| / |T| note that $\sum_{c} |T_{c}| = T$
 - let n_{wc} = #occurrences of word w in documents from T_c
 - let $n_c = \#$ occurrences of all words in documents from T_c
 - then $Pr(W = w | C = c) := n_{wc} / n_c$ note that $\Sigma_c n_{wc} = n_c$

Why is this a good choice for our priors?

, KE

Maximum Likelihood Estimation (MLE)

 INI

- say 5 times H and 15 times T
- which Pr(H) and Pr(T) are the most likely?
- looks like $Prob(H) = \frac{1}{4}$ and $Pr(T) = \frac{3}{4}$

Let S be the sequence we observed.
Let
$$h = \#H$$
 in S, and $t = \#T$
Let $p = Pr(H)$ and $q = Pr(T)$. Note inversion 't
Show p and q
 $Pr(S) = p^{2} \cdot q^{2}$ argmax p,q $p^{2} \cdot q^{2}$.
 $L := \log Pr(S) = h \cdot \log p + t \cdot \log q = 1-p$
 $\frac{\partial L}{\partial p} = \frac{h}{p} - \frac{t}{1-p} = 0 \implies g = p \cdot (g + t)$
 $p = \frac{h}{g + 1} \implies q = g + f$ 11

Maximum Likelihood Estimation (MLE)

Sequence of coin flips HHTTTTTHTTTHTTHTTHTTHTT

- say 5 times H and 15 times T
- which Pr(H) and Pr(T) are the most likely?
- looks like $Prob(H) = \frac{1}{4}$ and $Pr(T) = \frac{3}{4}$

How do we measure how good our classification is?

- for each class c we do the following
- let $D_c = #$ documents from class c (ground truth)
- let D'_c = #documents classified as c
- then, as usual (note that these are per class)
 - precision $P := |D'_c n D_c| / |D'_c|$
 - recall $R := |D'_c n D_c| / |D_c|$
 - F-measure $F := 2 \cdot P \cdot R / (P + R)$
- note that if $D_c = D'_c$ then P = R = F = 100% and only then

, REI

Feature Design and Selection

Feature Design

- in our example, we picked each word as feature
- other example: pick all 3-grams
- and / or additionally consider word positions
- and / or additionally consider part of speech (POS) tags

Feature Selection

- just picking all words is easy
- but some words are not very predictive, like new
- considering them adds unnecessary noise to our decision
- many methods to pick only predictive features
- one of the simplest one: pick only frequent words

References

LSI / PLSI demo

- automatic Windows installer with tool + demo collections
 <u>http://www.mpi-inf.mpg.de/~dfischer/alwis-1.1.0-full.exe</u>
- Naïve Bayes
 - The Wikipedia article is quite good

http://en.wikipedia.org/wiki/Naive Bayes classifier

The definitive book on the whole subject of learning
 <u>Elements of Statistical Learning, Springer 2009</u>

REI