Search Engines WS 2009 / 2010

Lecture 11, Thursday January 21st, 2010

(Text Classification with Naïve Bayes)

Overview of Today's Lecture

- Learn how to do text classification
- for example, for a given paper title, decide whether the paper is from a theory conference or from a search engine conference
- we will learn the simplest of all methods: Naive Bayes
- also some mathematical foundations
- But before
- another nice demo of what a method like latent semantic indexing can achieve and how it works ...

Demo for LSI, PLSI, etc.

$■$ Recall the intuition of the matrices U and V

- columns of U are the "concepts"
- columns of V are the mix of concepts per document

Here is a nice tool showing this for real collections

Text Classification

- Consider the following paper titles

A nearly optimal oracle for avoiding failed vertices and edges STOC
On iterative intelligent medical search SIGIR
Guilt by association as a search principle SIGIR
List decoding tensor products and interleaved codes STOC
On dynamic range reporting in one dimension STOC
Probabilistic Latent Semantic Indexing
SIGIR

- We want to tell from the titles alone
- which one of these are STOC papers (the top theory conference)
- and which ones are SIGIR papers (the top search conference)
- Idea: use the invididual terms to predict whether STOC or SIGIR
- e.g. "search" makes SIGIR more likely, "vertices" speaks for STOC

How to make a formal algorithm from this idea?

"Naive Bayes" Classification

- Three basic steps
- STEP 1: decide on certain features and represent each record wrt to these features
- we will take the words as features
- other possible features \rightarrow later slide
- STEP 2: for each feature "learn" the likeliness / probability of that feature for each class
- for example $\operatorname{Pr}(S I G I R \mid$ search $)=0.8$
- STEP 3: from these learned probabilities, compute the likeliness / probability of each class for a new record, e.g.
- $\operatorname{Pr}($ SIGIR | Document Expansion for Speech Retrieval) $=0.7$
- $\operatorname{Pr}($ STOC \mid Document Expansion for Speech Retrieval $)=0.3$

How do we get "Probabilitites" ?

- We assume the following random process
- for generating a single record / document with m words
- pick class c with probability p_{c}, where $\Sigma_{c} p_{c}=1$
- pick the i-th word as w with probability $p_{w c}$, where $\Sigma_{w} p_{w c}=1$
- we make the following strong assumption
- each word chosen independently of the other words
- very unrealistic indeed why?
- hence the "Naive" in Naive Bayes

■ However unrealistic ...

- now we have well-defined probabilities to compute with

Crash Course: Conditional Probabilities

- Bayes Theorem
- let A and B be events in a probability space Ω
- denote by $\operatorname{Pr}(A \mid B)$ the probability of $A n B$ in the space B
- then $\operatorname{Pr}(A \mid B):=\operatorname{Pr}(A \cap B) / \operatorname{Pr}(B)$
- and $\operatorname{Pr}(A \mid B) \cdot \operatorname{Pr}(B)=\operatorname{Pr}(B \mid A) \cdot \operatorname{Pr}(A)$
- For a good intuition, assume Ω is a finite set
- from which we pick a random element X with $\operatorname{Pr}(X=x)=1 /|\Omega|$

$$
\begin{aligned}
\operatorname{Pr}(A)= & \frac{|A|}{|\Omega|} \\
\operatorname{Pr}(A \mid B) & =\frac{|A \cap B|}{|B|}=\frac{|A \cap B| \backslash|\Omega|}{|B| \backslash|\Omega|} \\
& =\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
\end{aligned}
$$

Naive Bayes - Now Formally

- For a new document D we want to compute
$-\operatorname{Pr}\left(\mathrm{C}=\mathrm{c} \mid \mathrm{W}_{1}=\mathrm{W}_{1} \mathrm{n} \ldots \mathrm{n} \mathrm{W}_{\mathrm{m}}=\mathrm{W}_{\mathrm{m}}\right)$ for each class c where W_{i} is the i-th word of D
- and then pick that class for which this probability is largest $\operatorname{argmax}_{\mathrm{c}} \operatorname{Pr}\left(\mathrm{C}=\mathrm{c} \mid \mathrm{W}_{1}=\mathrm{w}_{1} \mathrm{n} \ldots \mathrm{n} \mathrm{W}_{\mathrm{m}}=\mathrm{w}_{\mathrm{m}}\right)$
- by our independence assumptions + Bayes this is equal to $\operatorname{argmax}_{c} \operatorname{Pr}(\mathrm{C}=\mathrm{c}) \cdot \Pi_{\mathrm{i}=1, \ldots, \mathrm{~m}} \operatorname{Pr}\left(\mathrm{~W}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}} \mid \mathrm{C}=\mathrm{c}\right)$
- proof on next slide ...

Proof that ...

$$
\begin{aligned}
& \operatorname{argmax}_{\mathrm{c}} \operatorname{Pr}\left(\mathrm{C}=\mathrm{c} \mid \mathrm{W}_{1}=\mathrm{w}_{1} \mathrm{n} \ldots \mathrm{n} \mathrm{~W}_{\mathrm{m}}=\mathrm{w}_{\mathrm{m}}\right) \\
& \quad=\operatorname{argmax}_{\mathrm{c}} \operatorname{Pr}(\mathrm{C}=\mathrm{c}) \cdot \Pi_{\mathrm{i}=1, \ldots, \mathrm{~m}} \operatorname{Pr}\left(\mathrm{~W}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}} \mid \mathrm{C}=\mathrm{c}\right)
\end{aligned}
$$

$$
\operatorname{Pr}\left(C=C \mid W_{1}=w_{1} \wedge \ldots W_{m}=W_{m}\right)
$$

$$
=\underbrace{\frac{\operatorname{Pr}(C=c)}{\operatorname{Pr}\left(W_{1}=w_{1} \wedge \ldots \wedge W_{m}=w_{m}\right)}}_{=: 0} \rightarrow \operatorname{Pr}_{n}\left(W_{1}=w_{1} \wedge \ldots \wedge W_{m}=w_{m}\right] C=c)
$$

Nate: Q ridon. of C
Nate: rere we need the undependence assumptian!
ahron

$$
\overbrace{R=Q} \operatorname{Pr}(C=C) \cdot \prod_{i=1}^{m} \operatorname{Pr}\left(w_{i}=w_{i} \mid C=c\right)
$$

Learning our Priors from a Test Set

■ We need the following prior probabilities
$-\operatorname{Pr}(\mathrm{C}=\mathrm{c}) \quad$ (the likeliness of each class)
$-\operatorname{Pr}(\mathrm{W}=\mathrm{w} \mid \mathrm{C}=\mathrm{c}) \quad$ (the likeliness of each word for each class)

- we estimate these from a test set for which we already know the classes
- The following looks very natural
- let T be our test set, and T_{C} the set of documents from class C
- then $\operatorname{Pr}(\mathrm{C}=\mathrm{c}):=|\mathrm{Tc}| /|\mathrm{T}| \quad$ note that $\Sigma_{\mathrm{c}}\left|\mathrm{T}_{\mathrm{C}}\right|=\mathrm{T}$
- let $n_{w c}=$ \#occurrences of word w in documents from T_{c}
- let $n_{c}=$ \#occurrences of all words in documents from T_{c}
- then $\operatorname{Pr}(\mathrm{W}=\mathrm{w} \mid \mathrm{C}=\mathrm{c}):=\mathrm{n}_{\mathrm{wc}} / \mathrm{n}_{\mathrm{c}} \quad$ note that $\Sigma_{\mathrm{c}} \mathrm{n}_{\mathrm{wc}}=\mathrm{n}_{\mathrm{c}}$

Why is this a good choice for our priors?

Maximum Likelihood Estimation (MLE)

- Sequence of coin flips

HHTTITTTHTTTTTHTTHHT

- say 5 times H and 15 times T
- which $\operatorname{Pr}(\mathrm{H})$ and $\operatorname{Pr}(\mathrm{T})$ are the most likely?
- looks like $\operatorname{Prob}(H)=1 / 4$ and $\operatorname{Pr}(T)=3 / 4$

Let S be the sequence we observed.
Let $h=\# H$ in S, and $t=\# T$
Let $p=\operatorname{Pr}(H)$ and $q=\operatorname{Pr}(T)$. Note: Ne dan't
$\operatorname{Pr}(S)=p^{k} \cdot q^{+} \quad \operatorname{argmax}_{p, q}$
$L:=\log \operatorname{Pr}(S)=h \cdot \log p+t \cdot \log q=1-p$

$$
\begin{align*}
\frac{\partial L}{\partial p}=\frac{h}{p}-\frac{t}{1-p}=0 \Rightarrow \begin{array}{l}
(1-p) \cdot r=p \cdot t \\
r=1-p
\end{array} \\
p=\frac{p \cdot(r+t)}{r+t}=q=\frac{t}{r+t} \tag{11}
\end{align*}
$$

Maximum Likelihood Estimation (MLE)

- Sequence of coin flips

HHTTITTTHTTTTTHTTHHT

- say 5 times H and 15 times T
- which $\operatorname{Pr}(\mathrm{H})$ and $\operatorname{Pr}(\mathrm{T})$ are the most likely?
- looks like $\operatorname{Prob}(H)=1 / 4$ and $\operatorname{Pr}(T)=3 / 4$

$$
\begin{aligned}
& L=h \cdot \log p+t \cdot \log q \quad, p+q=1 \\
& \hat{L}=h \cdot \log p+t \cdot \log q+\lambda(1-p-q) \\
& \frac{\partial \hat{L}}{\partial \lambda}=1-p-q=0 \quad \not \quad \frac{r}{p}=\frac{1}{r+t} \Rightarrow p=\frac{h}{r+t} \\
& \frac{\partial \hat{L}}{\partial p}=\frac{r}{p}-\lambda=0 \Rightarrow \lambda=\frac{r}{p} \Rightarrow p=\lambda \cdot h \\
& \frac{\partial \hat{L}}{\partial q}=\frac{t}{q}-\lambda=0 \Rightarrow \lambda=\frac{t}{q+t} \Rightarrow q=\lambda \cdot t \\
& \quad p+q=1 \Rightarrow \lambda=\frac{1}{h+t}
\end{aligned}
$$

Quality Evaluation

- How do we measure how good our classification is?
- for each class c we do the following
- let $\mathrm{D}_{\mathrm{c}}=$ \#documents from class C (ground truth)
- let D' ${ }_{c}=$ \#documents classified as c
- then, as usual (note that these are per class)
- precision $P:=\left|D^{\prime}{ }_{c} n D_{c}\right| /\left|D^{\prime}{ }_{c}\right|$
- recall $R:=\left|D^{\prime}{ }_{c} n D_{c}\right| /\left|D_{c}\right|$
- F-measure $\mathrm{F}:=2 \cdot \mathrm{P} \cdot \mathrm{R} /(\mathrm{P}+\mathrm{R})$
- note that if $D_{c}=D^{\prime}{ }_{c}$ then $P=R=F=100 \%$ and only then

Feature Design and Selection

- Feature Design
- in our example, we picked each word as feature
- other example: pick all 3-grams
- and / or additionally consider word positions
- and / or additionally consider part of speech (POS) tags
- Feature Selection
- just picking all words is easy
- but some words are not very predictive, like new
- considering them adds unnecessary noise to our decision
- many methods to pick only predictive features
- one of the simplest one: pick only frequent words

References

- LSI / PLSI demo
- automatic Windows installer with tool + demo collections http://www.mpi-inf.mpg.de/~dfischer/alwis-1.1.0-full.exe
- Naïve Bayes
- The Wikipedia article is quite good
http://en.wikipedia.org/wiki/Naive Bayes classifier
- The definitive book on the whole subject of learning Elements of Statistical Learning, Springer 2009

