Search Engines WS 2009 / 2010

Lecture 12, Thursday January 28th, 2010 (Clustering, Clustering, Clustering)

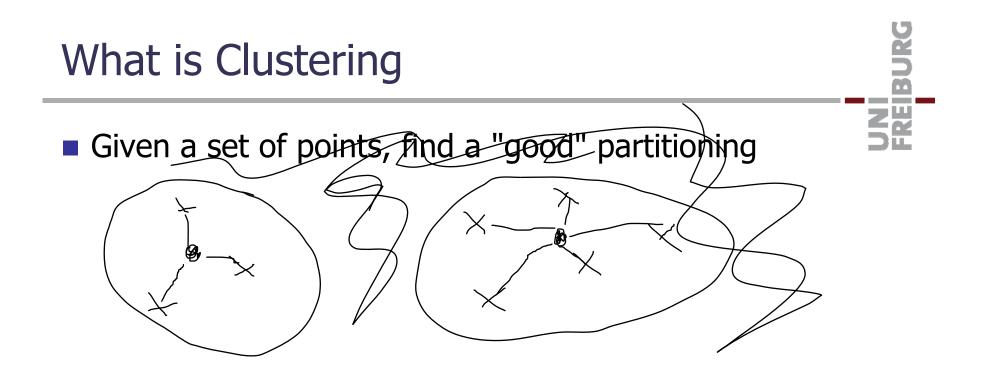
> Prof. Dr. Hannah Bast Chair of Algorithms and Data Structures Department of Computer Science University of Freiburg

REIBURG

Overview of Today's Lecture

Learn how to cluster

- What is clustering and how is it different from classification?
- The simplest of all clustering algorithms: k-means
- Hierarchical clustering
- A very nice impossibility result (Kleinberg, NIPS 2002)
 - No single clustering algorithms can achieve all desirable goals at the same time
 - (a bit like Heisenberg's uncertainty principle)



- Difference to classification:
 - Classification is supervised
 - we need training data where we know the classes
 - Clustering is unsupervised
 - we are just given the objects / points

When is a Clustering "Good" ?

- Many different ways to define quality
 - quality relative to a ground truth:
 - define precision and recall as usual
 - without a ground truth, just data-dependent:
 - intuitively, a clustering is good if it has
 - high intra-cluster similarity
 - Iow inter-cluster similarity
 - one formalization of this: RSS = residual sum of squares
 - Centroid of a cluster = average of points in the cluster
 - assume clusters C_1, \dots, C_k with centroids μ_1, \dots, μ_k
 - then RSS = $\sum_{i=1,...,k} \sum_{x \text{ in } Ci} |x \mu_i|^2$

NEI!

K-Means

FREIBURG

The simplest of all clustering algorithms

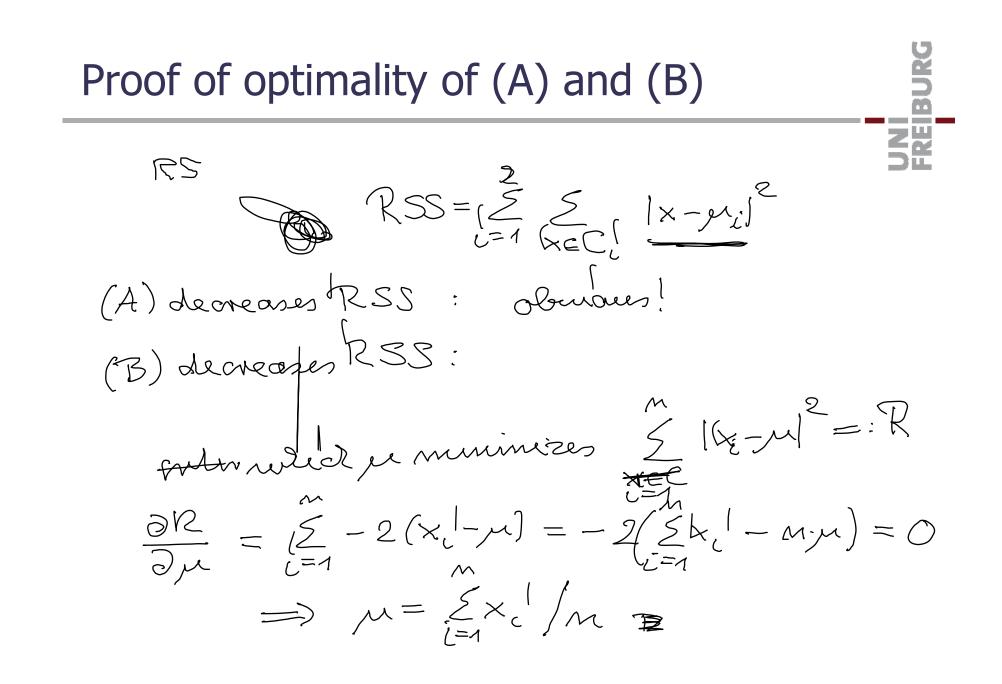
- used a lot in practice (because of its simplicity, like Naive Bayes)
- k-means tries to minimize RSS from last slide
- assume we know the optimal centroids

(A) then best to assign each point to its nearest centroid

- assume we know the optimal clustering

(B) then best to take centroid = average of points in cluster

- but initially we know neither the centroids nor the clustering
 - so guess some initial centroids
 - from that compute clustering according to (A)
 - from that compute centroids according to (B)
 - and so on ... <u>DEMO</u>



K-Means — Code

- Code live in a VNC session ...
 - with points = integers
 Exercise: points = text
- Possible abort criteria
 - after a fixed number of iterations
 - simple, but how to guess a good number?
 - until assignment of points to clusters remains constant
 - very reasonable, but can take very long for large data sets
 - terminate when RSS falls below given threshold
 - makes sense, but RSS may never fall below given threshold
 - combine with bound on number of iterations
 - terminate when decrease in RSS falls below given threshold
 - good, because we stop when we are close to convergence
 - must also combine with bound on number of iterations

- Proof of convergence to a local optimum
 - RSS decreases in assignment step (A)
 - this follows from our optimality proof for (A)
 - RSS decreases in centroid computation step (B)
 - this follows from our optimality proof for (B)
 - stop when there is no more decrease
 - only finitely many clusterings \rightarrow termination
 - however, we must pay attention to proper tie breaking
 - tie = two centroids are equally close
 - for example, always prefer centroid with smaller index
 - otherwise may cycle forever between clusters of equal quality

K-Means — Time Complexity

- The time complexity is
 - each assignment step (A) takes time $O(n \cdot k)$
 - where n = #points and k = #clusters
 - each centroid computation step (B) takes time O(n)
 - so with I iterations we get $O(I \cdot n \cdot k)$
 - but this assumes that adding two points takes time O(1)
 - not true for vectors in high-dimensional space
 - however, these vectors are usually sparse (e.g. docs)
 - then cost of addition is O(#non-zero entries)
 - however, the centroids quickly become not sparse!
 - simple trick: centroid truncation
 - set components with small values to zero

K-Means — Choice of K

Idea: try to base it on RSS

- Idea 1: choose the K with smallest RSS
 - bad idea, because RSS is always minimized for K = n
- Idea 2: choose K with smallest RSS + $\lambda \cdot K$
 - makes sense: RSS becomes larger as K becomes smaller
 - λ is a tuning parameter
 - now we have shifted the problem to finding a good λ
 - but for a given application, λ is often a constant while the best K may vary from instance to instance
 - this formula has an information-theoretic justification

General bottom-up idea:

- start with clustering, where each point is its own cluster
- iteratively merge the two clusters that are "closest"
- natural visualization of hierarchy as a dendrogram

NI

Which Clusters To Merge

- Similarity measure between clusters sim(C_i, C_i)
 - in each step merge C_i and C_j with smallest $sim(C_i, C_j)$
- Four common similarity measures
 - Single-Link: similarity of closest points
 - Complete-Link: similarity of farthest points
 - Centroid: average inter-similarity
 - Group-Average: average of all similarities

REI

Single-Link and Complete-Link

Single-Link Problem

– only the closest pair counts \rightarrow tendency to straggly clusters

- Complete-Link Problem
 - high sensitivity even to single outlier

- Graph-theoretic interpretation
 - let $s_k = sim(C_i, C_j)$ in k-th merging step
 - let G_k be the graph with an edge between all points with $d \le s_k$
 - then single-link clusters = connected components of G_k
 - and complete-link clusters = maximal cliques of G_k

Hierarchical Clustering — Time Complexity

Naive algorithm

- assume we proceed until we have k clusters
- compute all pairwise distances for all cluster pairs
 - this is on the order of n^2 (n = #points)
- so that gives a total time complexity of $O(k \cdot n^2)$
- n^2 is prohibitive for large data
- Improvement
 - using a priority queue we can achieve $O(k \cdot n \cdot \log n)$
 - this is ok; recall that k-means needs $O(I \cdot k \cdot n)$
 - for single-link we can even achieve $O(k \cdot n)$
 - we will not go into the details of these algorithms here
 - read in the references in case you are interested

An Impossibility Theorem for Clustering

Naive but valid question:

- Can't there a single clustering that is always the best?
- Each clustering algorithm we know has some drawbacks
- but that does not answer our question
 - maybe just no one has been smart enough yet?
- let's formulate three natural properties which every clustering algorithm should have

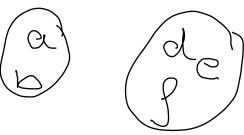
ZW

UNI FREIBURG

- every clustering algorithm should have
 - Scale Invariance: when we multiply all distances by a constant factor, the clustering remains the same

- Richness: each possible partioning is achieved on some dataset

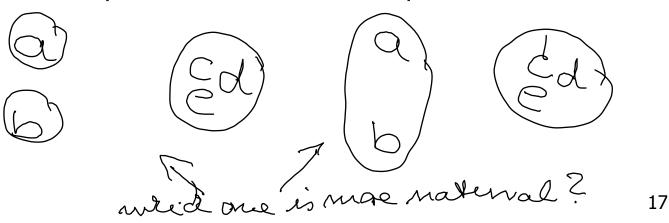
 Consistency: if we shrink the intra-cluster distances and increase the inter-cluster distances, the clustering stays the same



Impossibility theorem

No clustering algorithm can achieve all three!

- here is the basic proof idea
- define an antichain as a set of partionings where no partioning is a refinement of another partioning
- then proof that Scale-Invariance + Consistency imply that the set of achievable partionings is an antichain thus contradicting Richness
- here is some intuition which you will only be able to full ψ^{O} understand after you have understood the proof:



Proof of Impossibility Theorem 1 Let A be a clustering algorithm which satisfies EOSCALE-INVARIANCE and CONSISTENCY Assume (by way of contradiction) Ral IT, To where T, ST, back mod. by A $\begin{bmatrix} 1 & (Q_{1}) \\ 1 & (Q_{2}) \\ (Q_{2}) & (Q_$

Proof of Impossibility Theorem 2 $(1,5) \Rightarrow \Gamma$ (Λ) (5, 10) =)](2)Now take clustering Γ_2 and bring all inbra-cluster destands of $\Gamma_1 \leq 1$. (1) =) A produces [] (2) = A produces []

Proof of Impossibility Theorem 3

References

K-Means and Hierarchical Clustering

Again, the Wikipedia articles are ok
 <u>http://en.wikipedia.org/wiki/K-means</u>

http://en.wikipedia.org/wiki/Hierarchical clustering

- Here is the textbook which I also consulted

Introduction to Information Retrieval

- The impossibility theorem
 - The NIPS 2002 paper by <u>Jon Kleinberg</u>
 <u>An impossibility theorem for Clustering</u>

REI