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Overview of Todayꞌs Lecturey

 Learn how to cluster
– What is clustering and how is it different from classification?

– The simplest of all clustering algorithms: k-means

– Hierarchical clustering

– A very nice impossibility result (Kleinberg, NIPS 2002)

No single clustering algorithms can achieve all desirable 
goals at the same time

( bit lik H i b ꞌ t i t i i l )(a bit like Heisenbergꞌs uncertainty principle)
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What is Clusteringg

 Given a set of points, find a "good" partitioning

 Difference to classification: Difference to classification:

– Classification is supervised

we need training data where we know the classeswe need training data where we know the classes

– Clustering is unsupervised

j t i th bj t / i t
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we are just given the objects / points



When is a Clustering "Good" ?g

 Many different ways to define quality
– quality relative to a ground truth:

define precision and recall as usual

– without a ground truth, just data-dependent:

intuitively, a clustering is good if it has 

high intra-cluster similarity

low inter-cluster similarity

f li ti f thi RSS id l fone formalization of this: RSS = residual sum of squares

Centroid of a cluster = average of points in the cluster

l t C C ith t idassume clusters C1,...,Ck with centroids µ1,...,µk

then  RSS = ∑i=1,...,k ∑x in Ci |x - µi|2
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K-Means

 The simplest of all clustering algorithms
– used a lot in practice (because of its simplicity, like Naive Bayes)

– k-means tries to minimize RSS from last slide

– assume we know the optimal centroids

(A)  then best to assign each point to its nearest centroid

– assume we know the optimal clustering

(B)  then best to take centroid = average of points in cluster

b t i iti ll k ith th t id th l t i– but initially we know neither the centroids nor the clustering

so guess some initial centroids

f th t t l t i di t (A)from that compute clustering according to (A)

from that compute centroids according to (B)

and so on DEMOand so on ... DEMO
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Proof of optimality of (A) and (B)p y ( ) ( )
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K-Means — Code

 Code live in a VNC session ...
h– with points = integers                 Exercise: points = text

 Possible abort criteria
– after a fixed number of iterations

simple, but how to guess a good number?

ntil assignment of points to cl ste s emains constant– until assignment of points to clusters remains constant

very reasonable, but can take very long for large data sets

– terminate when RSS falls below given threshold– terminate when RSS falls below given threshold

makes sense, but RSS may never fall below given threshold

combine with bound on number of iterationscombine with bound on number of iterations

– terminate when decrease in RSS falls below given threshold

good, because we stop when we are close to convergenceg , p g

must also combine with bound on number of iterations
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K-Means — Convergenceg

 Proof of convergence to a local optimum
– RSS decreases in assignment step  (A)

this follows from our optimality proof for (A)

– RSS decreases in centroid computation step  (B)

this follows from our optimality proof for (B)

– stop when there is no more decrease

– only finitely many clusterings  termination

h t tt ti t ti b ki– however, we must pay attention to proper tie breaking

tie = two centroids are equally close

f l l f t id ith ll i dfor example, always prefer centroid with smaller index

otherwise may cycle forever between clusters of equal quality
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K-Means — Time Complexityp y

 The time complexity is
– each assigment step (A) takes time O(n · k)

where n = #points and k = #clusters

– each centroid computation step (B) takes time O(n)

– so with I iterations we get O(I · n · k)

– but this assumes that adding two points takes time O(1)

not true for vectors in high-dimensional space

however, these vectors are usually sparse (e.g. docs)

then cost of addition is O(#non-zero entries)

however, the centroids quickly become not sparse!

simple trick: centroid truncation

h ll lset components with small values to zero 
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K-Means — Choice of K

 Idea: try to base it on RSS
– Idea 1:  choose the K with smallest RSS

bad idea, because RSS is always minimized for K = n

– Idea 2:  choose K with smallest RSS + λ · K

makes sense: RSS becomes larger as K becomes smaller

λ is a tuning parameter

now we have shifted the problem to finding a good λ

but for a given application, λ is often a constant

while the best K may vary from instance to instance

this formula has an information-theoretic justification
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Hierarchical Clusteringg

 General bottom-up idea:
– start with clustering, where each point is its own cluster

– iteratively merge the two clusters that are "closest"

– natural visualization of hierarchy as a dendrogram

a b ed
a

fc g
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Which Clusters To Mergeg

 Similarity measure between clusters sim(Ci, Cj)i j
– in each step merge Ci and Cj with smallest sim(Ci, Cj)

 Four common similarity measuresFour common similarity measures
– Single-Link: similarity of closest points

– Complete-Link: similarity of farthest points

– Centroid: average inter-similarity

– Group-Average: average of all similarities
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Single-Link and Complete-Linkg p

 Single-Link Problem
– only the closest pair counts  tendency to straggly clusters

 Complete-Link Problem
– high sensitivity even to single outlier

 Graph-theoretic interpretation
– let sk = sim(Ci, Cj) in k-th merging step

– let Gk be the graph with an edge between all points with d ≤ sk

th i l li k l t t d t f G– then single-link clusters = connected components of Gk

– and complete-link clusters = maximal cliques of Gk 13



Hierarchical Clustering — Time Complexityg p y

 Naive algorithm
– assume we proceed until we have k clusters

– compute all pairwise distances for all cluster pairs

this is on the order of n2 (n = #points)

– so that gives a total time complexity of O(k · n2)

– n2  is prohibitive for large data

 Improvement
– using a priority queue we can achieve O(k · n · log n)

– this is ok; recall that k-means needs O(I · k · n)

– for single-link we can even achieve O(k · n)

– we will not go into the details of these algorithms here

d i th f i i t t dread in the references in case you are interested
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An Impossibility Theorem for Clustering p y g

 Naive but valid question:
– Canꞌt there a single clustering that is always the best?

– Each clustering algorithm we know has some drawbacks

– but that does not answer our question

maybe just no one has been smart enough yet?

– letꞌs formulate three natural properties which every 
clustering algorithm should have
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Three Properties ...p

 ... every clustering algorithm should have
– Scale Invariance:  when we multiply all distances by a constant 

factor, the clustering remains the same

– Richness:  each possible partioning is achieved on some dataset

– Consistency:  if we shrink the intra-cluster distances and 
increase the inter-cluster distances the clustering stays the sameincrease the inter cluster distances, the clustering stays the same
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Impossibility theoremp y

 No clustering algorithm can achieve all three!
– here is the basic proof idea

– define an antichain as a set of partionings where no 
ti i i fi t f th ti ipartioning is a refinement of another partioning

– then proof that Scale-Invariance + Consistency imply 
that the set of achievable partionings is an antichainthat the set of achievable partionings is an antichain
thus contradicting Richness

– here is some intuition which you will only be able to fully 
understand after you have understood the proof:
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Proof of Impossibility Theorem 1p y
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Proof of Impossibility Theorem 2p y
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Proof of Impossibility Theorem 3p y
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References

 K-Means and Hierarchical Clustering
– Again, the Wikipedia articles are ok

http://en.wikipedia.org/wiki/K-means

http://en.wikipedia.org/wiki/Hierarchical_clustering

– Here is the textbook which I also consulted

Introduction to Information Retrieval

 The impossibility theorem
– The NIPS 2002 paper by Jon Kleinberg

An impossibility theorem for Clustering
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