
S h E iSearch Engines
WS 2009 / 2010

Lecture 2, Thursday October 29th, 2009
(Socket Communication TCP/IP HTTP etc)(Socket Communication, TCP/IP, HTTP, etc.)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Rules for the Exercises

Exercises are the most important part of this course
– you may skip the lecture if you feel you don’t need it

– you may skip the tutorials if you feel you don’t need ity y p y y

– but you absolutely must to the exercises

You can’t work in groupsYou can t work in groups
– must do everything by yourself, otherwise you don’t learn it

– if you cheat / copy, you are out, so don’t do it!if you cheat / copy, you are out, so don t do it!

– in the project after the lecture you can work in groups!

MarksMarks
– one point per exercise, you will get a mark in the end

the exercise mark is 40% of your final mark that’s a lot– the exercise mark is 40% of your final mark, that s a lot

The code you write …y

… should satisfy certain standards
– at least minimally documented

a description at the beginning what the program does

a description of every class and every function

– following some style guidelines, and do it consistently

see NoNos on next slide

– think about naming of variables, classes, etc.

– your code should always come with a README file that says

exactly how you compiled your program

exactly how you ran your program

describe any additional tools that you used

you will get less points if you don’t care about this

Coding NoNos (a selection)g ()

Inconsistent spacing

if (flag ==true){ x = x +2 ; flag= false;}

Inconsistent indentation

– on same level always use, say, 2 spaces (never use tabs!)

– place your { … } consistentlyplace your { … } consistently

Meaningless or incomprehensible names

l M Clclass MyClass;

int stack = 3;

char* mstrfgy_W;

Overlong methods

– not more than, say, one screen per method

Oh yes, and for the other write-up ...y , p

… please also maintain a certain standard

– proof-read before you submit

– running a spell-checker is an absolute must

make it a habit!

– whenever you do something you have to argue …whenever you do something you have to argue …

… how you have done it

and why you did it the way you did it… and why you did it the way you did it

e.g., you can’t just write: my ε is 0.06

the exercises are deliberately somewhat underspecified– the exercises are deliberately somewhat underspecified

whenever something is unclear, ask!

Goals for Lecture 2

Search with a client and a server

– in Lecture 1 / Exercise Sheet 1, you have learned how to
build a (very simple) standalone search engine

– in Lecture 2 / Exercise Sheet 2, learn how to build a
browser-based search engine

client, server, and communication between the two

Network communication

– an important ingredient of every search engine

– learn what is involvedlearn what is involved

– and what makes it fast / slow

Overview of Lecture 2

Socket Communication
– basic principles

– basic code

TCP / IP
– what is involved

– how fast / slow

HTTP
– basic protocol

– request types: GET, POST, etc.

HTML
– basic principlebasic principle

– forms, input, submit

Socket Communication

First, some terminology
– Process: program with its own resources (i.p. memory)

running on your computer

H d i i h h h ?– How do processes communicate with each other?

– Socket: communication point, like one end of a telephone line.

F h S k IP dd P– For us here Socket = IP address + Port.

– IP address: the telephone number of your computer

P t lik b t l h b– Port: like a sub-telephone number

Communication is two-way
– both ends need a Socket = IP address + host

(both sockets may be on the same computer though, e.g. for
local inter process communication)local inter-process communication)

Socket communication — Server Code

Here is how server code looks like in C++ (simplified!)

server_fd = socket(AF_INET, SOCK_STREAM, 0)
server_address.sin_family = AF_INET;

dd i dd dd INADDR ANYserver_address.sin_addr.s_addr = INADDR_ANY;
server_address.sin_port = htons(80);
bind(server_fd, &server_address);(_ , _);
listen(server_fd, 5)

client_fd = accept(server_fd, &client_address);
read(client_fd, buffer, 1024);
printf(“Here is the request I got: %s\n”, buffer);
write(client fd “Never say that again to me!” 27);write(client_fd, Never say that again to me! , 27);

close(client_fd);

many details ommitted, e.g., you must read and write in rounds!

Socket communication — Client Code

Here is how client code looks like in C++ (simplified!)

client_fd = socket(AF_INET, SOCK_STREAM, 0);
server = gethostbyname(“vulcano.informatik.uni-freiburg.de”);

dd i f il AF INETserver_address.sin_family = AF_INET;
server_address.sin_addr.s_addr = server->h_addr; // use bcopy
server_address.sin_port = htons(80);_ _p ();

connect(client_fd, &server_address);
write(client_fd, “Why me?”, 7);
read(client_fd, buffer, 1024);
printf(“Here is what the oracle told me: %s\n”, buffer);

l (li t fd)close(client_fd);

for details refer to man pages or documentation on the web

Protocol, HTTP,

Processes need to agree on a protocol for the
communication, e.g.

– Process 1: How much is [mathematical expression][p]

– Process 2: [mathematical expression] is [result]

HTTP is a *very* simple protocolHTTP is a very simple protocol

– Process 1: GET /index.html HTTP/1.1

P 2– Process 2:

HTTP/1.1 200 OK
Date: Thu 29 Oct 2009 16:34:12 GMTDate: Thu, 29 Oct 2009 16:34:12 GMT
[empty line]
Here comes the answer to the request /index.html

More about HTTP

HTTP can do more stuff though

HEAD: just like GET, but only ask for the headers

POST: send data along with the requestPOST: send data along with the request

(Note: small data can also be appended to URL in GET)

PUT: Upload data to given URL (similar to FTP)PUT: Upload data to given URL (similar to FTP)

DELETE: Delete that data

TRACE: echo back request (with changes that happened underway)TRACE: echo back request (with changes that happened underway)

OPTIONS: ask which HTTP methods are supported

lCONNECT: convert request connection to tunnel

as a minimum GET and HEAD must be supported

Browser Webserver Communication

What happens when you type a URL

– say http://ad.informatik.uni-freiburg.de/teaching

– browser creates an internet socket, as described

– binds it to some free local port of your machine, e.g. 17457

– get IP address for ad.informatik.uni-freiburg.de

f hi b h k (b) DNSfor this browser has to ask a (nearby) DNS server

– send HTTP request string to that machine on port 80

GET /te hing HTTP/1 1 (nd ome option l he de)GET /teaching HTTP/1.1 (and some optional headers)

– receive answer with HTTP headers + newline + contents

one of the HTTP headers says that it is an HTML pageone of the HTTP headers says that it is an HTML page

Content-Type: text/html; charset=utf-8

– browser renders the HTML in a nice waybrowser renders the HTML in a nice way

TCP / IP

Internet Protocol Suite (TCP / IP is the shortcut)
– Link Layer e.g. Ethernet or WLAN

send packets along local linksp g

– Internet Layer e.g. IPv4 or IPv6

send packets across the Internet, unreliablep

– Transport Layer e.g. TCP or UDP

send packets across the Internet, reliably

– Application Layer e.g. HTTP

send a request string, get an answer string

And below all that is the hardware
– twisted pair cables, coaxial cables, optical fibertwisted pair cables, coaxial cables, optical fiber

Hardware

Twisted Pair Cables
– cheap, for distances up to 100m

– bandwidth: 1 GBit / second

Coaxial cables
– more expensive, for distances up to 1000m

– bandwidth: 10 GBit / second

Optical fibre
– much more expensive, great for long-distance

– around 100 GBit / second per channel (frequency)/ p (q y)

– around 100 channels / fibre

– around 100 fibres / cable

recall: typical disk transfer rate is 50 MB = 400 MBit / second

Link Layer — send packets along single linky g g

For example, Ethernet

– Computers locally connected via cable (typically twisted
pair Ethernet)

– CSMA / CD protocol

CSMA = carrier sense multiple access

CD = collision detection

think of several people at a dinner table, only one
person should speak at a time.

– like this, send so-called frames of data

send bit after bit, abort if collision occurs

Typical data transfer rate: 1 Gbit / secondyp /

Internet Layer — send across Internet, unrel.y

For example, IP = Internet protocol

– send a packet of data from one computer to another

– use Link Layer protocols for each link

– packets consist of: source address, target address, data

– routing is local: each router sends to locally next best
router, based on prefix of target address

– IP is unreliable:

packets may get lost

packets may get duplicated

packets may get distorted

packets may arrive out of orderp y

Typical data transfer rate: Exercise 4

Transportation Layer — TCP (reliable)p y ()

TCP = Transmission Control Protocol
– send packets reliably:

no packet loss or corruption, no out of order arrival

li d f ll– realized as follows:

connection establishment via three-way handshake

client SYN server SYN ACK client ACKclient SYN, server SYN-ACK, client ACK

data transfer via packet numbers and acks

destination host rearranges packets acc to numberdestination host rearranges packets acc. to number

resent packages receipt of which was not ack’ed

discard duplicate packetsdiscard duplicate packets

flow control (destination host has limited buffer)

congestion control (“slow start”, etc.)congestion control (slow start , etc.)

Typical data transfer rate: Exercise 4

Transportation Layer — UDP (unreliable)p y ()

UDP = User Datagram Protocol

– send messages via an unreliable Internet Layer protocol

messages may arrive out of order

messages can get lost

messages can get corrupted

– thereby faster than TCP how much: Exercise 2.3

– unreliability is acceptable in many applicationsy p y pp

DNS serving

video streaming voice over IP etcvideo streaming, voice over IP, etc.

online games

Typical data transfer rate: Exercise 4Typical data transfer rate: Exercise 4

Application Layerpp y

Send and receive following a certain protocol

For example, HTTP

– send a request string in a particular formatsend a request string in a particular format

e.g. GET /xyz HTTP 1.1

– receive an answer string in a particular formatreceive an answer string in a particular format

HTTP headers + empty line + contents

all kinds of other fancy stuff– all kinds of other fancy stuff

caching, keep connection open, etc.

li bili i h dl d b h d l i l– reliability issues are handled by the underlying layer

typically TCP

Typical data transfer rate: Exercise 4

Finally, some HTMLy,

HTML = hypertext markup language
– primary goal: basic markup for dummies

– mixture between more semantic and purely layout markup

<h1> </h1> level 1 heading<h1> … </h1> level-1 heading

 line break

– also contains communication semanticsalso contains communication semantics …

Forms
<form action=“http://some url” method=“GET”><form action= http://some_url method= GET >
<input type=“text” name=“query” />
<input type=“submit” value=“Submit” />

</fo m></form>

why me?

– will send GET request to http://some_url/?query=why+me%3f

