
S h E iSearch Engines
WS 2009 / 2010

Lecture 3, Thursday November 5th, 2009
(Ranking Tf idf BM25 Precision Recall Top K)(Ranking, Tf.idf, BM25, Precision, Recall, Top-K)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Why Rankingy g

Very simple answer:

– for almost any query on any collection you will get a lot
of hits

– it’s a lot of work or impossible to look at all of them

– therefore it’s important that those hits which are most p
relevant for your query are shown first

– Give example of a Google query

– Note: Google’s ranking formula is like the Coca-Cola
recipe

Goals for Lecture 3

Learn essential things about ranking (of search results)

– how to assign scores to documents wrt a query

– state of the art formulas for such scoresstate of the art formulas for such scores

– understand the rationale behind these formulas

– how to measure whether a ranking is good or bad– how to measure whether a ranking is good or bad

– how to compute the top-ranked documents efficiently

(without looking at all possible hits)(without looking at all possible hits)

Exercises

– practical: analyze a query of your choice

– theoretical: some things about scoring

Two ways of rankingy g

Query-independent

– alphabetically

– by date of creation (e.g. for a publication)by date of creation (e.g. for a publication)

– by date of last modification (e.g. for files)

–– …

– very easy to compute

Q d d tQuery-dependent

– somehow measure the relevance of each document to
ththe query

– how does one make relevance objective?

Query-dependent RankingQ y p g

Some factors that should influence ranking

– the more often a document contains a query word the higher it
should get ranked

– some words (or: terms) are more “significant” than others

for example: informatik versus andp

– intuitively, the most significant terms in a document are those

which are not very frequent overallwhich are not very frequent overall

but occur frequently in this particular document

– this is exactly what tf idf is trying to addressthis is exactly what tf.idf is trying to address

see next slide

tf.idf

tf = term frequency
– the term frequency of a term in a document is the number of

occurrences of that term in that document

idf = inverse document frequency
– the df = document frequency of a term is the number of

d t t i i th t tdocuments containing that term

– the inverse document frequency is a function that decreases
as the document frequency increasesas the document frequency increases

for example idf = log (N / df), where N = # all documents

tf idf is simply the product of the twotf.idf is simply the product of the two
– for example tf.idf = tf · log (N / df)

Note: there are many tf.idf formulas, not just one

How to rank from tf.idf scores

Easy:

– inverted lists with scores (produced by parser)

informatik
Doc12 Doc57 Doc59 Doc61 Doc77 …

informatik
0.2 0.7 0.3 0.3 0.9 …

f ib
Doc5 Doc12 Doc13 Doc14 Doc67 …

– form *union* (not intersection) of lists computing the

freiburg
0.2 0.4 0.3 0.3 0.9 …

form union (not intersection) of lists, computing the
sum of the scores for each document

informatik Doc5 Doc12 Doc57 Doc61 Doc77 …informatik
freiburg 0.2 0.6 0.7 0.3 0.9 …

N t d t t i i t ll d k hi hNote: document containing not all query words may rank high

sometimes called “and-ish” retrieval

Vector Space Modelp

Term-document matrix (with tf.idf scores)

Doc1 Doc2 Doc3 Doc4 Doc5

internet 0 9 0 0 0 0 6 0

Qry

1 0internet 0.9 0.0 0 0.6 0

web 0.3 0.9 0 0.4 0

surfing 0 7 0 6 0 0 8 0 6

1.0

0

0surfing 0.7 0.6 0 0.8 0.6

beach 0 0 1.0 0.3 0.7

0

0

Similarity between docs = similarity between vectors

– e.g., just take scalar productg , j p

high if vectors have many terms in common

zero if vectors have no terms in commonzero if vectors have no terms in common

Note: query can be viewed as a vector in the same way

Vector Space Modelp

Term-document matrix (with tf.idf scores)

Doc1 Doc2 Doc3 Doc4 Doc5

internet 0 9 0 0 0 0 6 0

Qry

1 0internet 0.9 0.0 0 0.6 0

web 0.3 0.9 0 0.4 0

surfing 0 7 0 6 0 0 8 0 6

1.0

0

0surfing 0.7 0.6 0 0.8 0.6

beach 0 0 1.0 0.3 0.7

0

0

Cosine similarity

– cosine of angle between vectorsg

– this is equal to the scalar product if the vectors are normalized

– advantage: deals with different document lengthsadvantage: deals with different document lengths

see example on next slide

Vector Space Model — Document Lengthp g

Give example query and two documents

– query contains exactly one word

– both documents contain the word the same number of
times

– but one is much longer than the other

– the shorter one should be preferred

Relevance Feedback

Assume the user says which of the documents
returned are relevant

– then take these documents and form their “average”g

– take this average document as a new query

– rank documents according to this new queryrank documents according to this new query

– should give more relevant results now

Pseudo Relevance Feedback:Pseudo-Relevance Feedback:

– just take the top-k documents returned (assuming they
are all relevant) and do the same with themare all relevant) and do the same with them

– can be iterated

BM25

BM25 = Best Match 25
– a formula used with great success in the Okapi IR system

– here is the formula for the weight of some term in some doc.

tf* · log (N / df)

where tf* = tf · (k + 1) / (k · (1 – b + b · DL / AVDL) + tf)

he e tf te m f eq enwhere tf = term frequeny

DL = document length

AVDL = average document lengthAVDL = average document length

k = 1.5 and b = 0.75 (tuning parameters)

Outperformed all previous formulas at its timeOutperformed all previous formulas at its time
– and still one of the best

– although the theory is more hand-waving than theoryalthough the theory is more hand waving than theory

(which is quite typical for information retrieval research)

BM25 — Derivation

Replace simple tf by tf* = tf · (k + 1) / (k + tf)

– is 0 when tf = 0

– increases as tf increasesincreases as tf increases

– limit k + 1 as tf infinity

Normalize tf depending on document lengthNormalize tf depending on document length

– alpha = DL / AVDL

– better: alpha = (1-b) + b · DL / AVDL

– replace tf tf / alpha

– this gives the BM25 formula

Global document score

Give each document a query-independent score, too
– very important for web search

– where some pages are just more important than others

– Google’s PageRank

we might do it later in the course

– simple technical realization:

just add a special word IMPORTANCE to every document

for each document assign a score to that special word
reflectin how important the document is

h i i th i f ibwhen receiving the query uni freiburg …

… actually process the query IMPORTANCE uni freiburg

thi ill dd th ti t h d tthis will add the respective score to each document

Precision and Recall

Consider a particular query

– Hits = subset of documents returned for that query

– Relevance of a document = assessed by human

– Precision = percentage of hits that are relevant

– Recall = percentage of relevant documents returned as hitsRecall percentage of relevant documents returned as hits

– Precision @ K = percentage of relevant docs in the top-K

– Precision at recall 10% (and similarly for other %ages):Precision at recall 10% (and similarly for other %ages):

pick k such that top-k hits contain 10% of all relevant docs

Precision @ 10% = percentage of relevant docs in these k docsPrecision @ 10% = percentage of relevant docs in these k docs

– Average precision :

A f P i i @ 10% P i i @ 20%Average of Precision @ 10%, Precision @ 20%, … (until 100%)

Precision-Recall Graphp

Draw an example:

– recall levels on x-axis

– precision at the respective level on y-axisprecision at the respective level on y axis

Precision-Recall Examplep

Do an example by hand

F-Measure

Single value capturing both precision and recall

2 · precision · recall / (precision + recall)

– that’s just the harmonic mean of the twothat s just the harmonic mean of the two

– so it always lies between the two

Relevance

Some ranking issues have nothing to do with the
term weights

– Chris Buckleyy
Why Current Search Engines Fail
In Proceedings SIGIR 2004

– http://doi.acm.org/10.1145/1008992.1009132

Top-k query processingp q y p g

middle nowhere

D17 0.5 D23 0.2

D9 0.4 D20 0.1

D21 0.2 D9 0.1

D23 0.2 D17 0.1

Goal: find the k documents with the highest score sum

– for k = 1, this is document D17 in the example above

Top-k query processing — Naïve Wayp q y p g y

middle nowhere

D9 0.2 D9 0.1

D17 0.5 D17 0.1

D21 0.2 D20 0.1
1. have each list
sorted by doc id

D23 0.2 D23 0.2

Top-k query processing — Naïve Wayp q y p g y

middle nowhere

D9 0.2 D9 0.1

D17 0.5 D17 0.1

D21 0.2 D20 0.1
1. have each list
sorted by doc id

D23 0.2 D23 0.2

D9 D9 D17 D17 D20 D21 D23 D23 2 th li tD9 D9 D17 D17 D20 D21 D23 D23
0.2 0.1 0.5 0.1 0.1 0.2 0.2 0.2

2. merge the lists

Top-k query processing — Naïve Wayp q y p g y

middle nowhere

D9 0.2 D9 0.1
D17 0.5 D17 0.1
D21 0.2 D20 0.1

23 0 2 23 0 2

1. have each list
sorted by doc id

D23 0.2 D23 0.2

D9 D17 D20 D21 D23 2 th li tD9 D17 D20 D21 D23
0.3 0.6 0.1 0.2 0.4

2. merge the lists

Top-k query processing — Naïve Wayp q y p g y

middle nowhere

D9 0.2 D9 0.1

D17 0.5 D17 0.1

D21 0.2 D20 0.1
1. have each list
sorted by doc id

D23 0.2 D23 0.2

D9 D17 D20 D21 D23 2 th li tD9 D17 D20 D21 D23
0.3 0.6 0.1 0.2 0.4

2. merge the lists

D17 D23 D9 D21 D20
3. sort by score

D17 D23 D9 D21 D20
0.6 0.4 0.3 0.2 0.1

Top-k query processingp q y p g

middle nowhere

D9 0.2 D9 0.1

D17 0.5 D17 0.1

D21 0.2 D20 0.1
1. have each list
sorted by doc id

D23 0.2 D23 0.2

D9 D17 D20 D21 D23 2 th li tD9 D17 D20 D21 D23
0.3 0.6 0.1 0.2 0.4

2. merge the lists

D17 D23 D9 D21 D20
3. sort by score

D17 D23 D9 D21 D20
0.6 0.4 0.3 0.2 0.1

requires full scan of all lists involved

Top-k query processing — More Efficientp q y p g

middle nowhere

D17 0.5 D23 0.2

D9 0.2 D20 0.1

D21 0.2 D9 0.1
have each list

sorted by score
D23 0.2 D17 0.1

Top-k query processing — More Efficientp q y p g

middle nowhere

D17 0.5 D23 0.2

D9 0.2 D20 0.1

D21 0.2 D9 0.1
have each list

sorted by score
D23 0.2 D17 0.1

D17 [0.5 , 0.7]
D23 [0.2 , 0.7]
all others <= 0.7

Top-k query processing — More Efficientp q y p g

middle nowhere

D17 0.5 D23 0.2

D9 0.2 D20 0.1

D21 0.2 D9 0.1
have each list

sorted by score
D23 0.2 D17 0.1

D17 [0.5 , 0.6]
D23 [0.2 , 0.4]
D9 [0 2 0 3]D9 [0.2 , 0.3]
D20 [0.1 , 0.3]
all others <= 0 3all others <= 0.3

Top-k query processing — More Efficientp q y p g

middle nowhere

D17 0.5 D23 0.2

D9 0.2 D20 0.1

D21 0.2 D9 0.1
have each list

sorted by score
D23 0.2 D17 0.1

D17 [0.5 , 0.6]
D23 [0.2 , 0.4]
D9 [0 2 0 3]

we can stop here!
D9 [0.2 , 0.3]
D20 [0.1 , 0.3]
all others <= 0 3all others <= 0.3

Top-k query processing — Literaturep q y p g

Celebrated result by Fagin et al :

– Ronald Fagin and Amnon Lotem and Moni Naor
Optimal aggregation algorithms for middleware
Journal of Computer and Systems Sciences 66:614-656, 2003

– an algorithm with costs that are within a factor of 4m+k of
th ti f h i tthe optimum for each instance

– but for k = 10 and m = 3, this is already a factor of 22

– but it can be made to work in practice

Bast et al, VLDB 2006

sort by score, divide into blocks, then sort blocks by doc id

