Search Engines
WS 2009 / 2010

Lecture 4, Thursday November 12t, 2009
(I0- and Cache-Efficiency, Compression)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Goals

m Learn why compression is important
— cache efficiency: sequential vs. random access to memory
— I0-efficiency: sequential vs. random access to disk

m Learn about various compression schemes
— Elias, Golomb, Variable Byte, Simple-9

m Learn some important theoretical foundations

— entropy = optimal compressibility of data
— which scheme is optimal under which circumstances?

— how fast can one compress / decompress?

I0-Efficiency (IO = Input / Output)

m Sequential vs. random access to disk
— typical disk transfer rate is 50 MB / second

— typical disk seek time is 5 milliseconds

m This means that

— .. when we write code for data is so large that it does not
completely fit into memory (as is typical for search apps) ...

— then we must take great care that whenever we read from (or
write to) disk, we actually read (or write) big *blocks of data*

— an algorithm which does that is called 10-efficient

— more formally — next slide

IO-Efficiency — Formalization

m Standard RAM model (RAM = random access machine)

— count the number of operations

one operation = an arithmetic operation, read/write a
single memory cell, etc.

— for example, sorting n integers needs O(n - log n) operations

m]|O-Model or: External memory model

— data is read / written in blocks of B contiguous bytes

— count the number of block reads / write

— ignore all other operations / computational costs

— for example, the IO-efficiency of sorting is O(n/B - logy /B n/B)

were M is the size of the main memory briefly explain bound

Cache-Efficiency

m Basic functioning of a cache draw interactively

Comparison: Disk / Memory

m Both have in common that

— sequential access is much more efficient than random access

m The ratios are very different though
— disk
» ~ 50 MB / second transfer rate
» ~ 5 milliseconds seek time
» this implies an optimal block size of ~ 250 KB
— memory
~ 1 GB / second sequential read
~ 100 nanoseconds for a random access / cache miss

» this implies an optimal block size of ~ 100 bytes

IO / Cache Efficiency

m Understand

— considering I0 and cache efficiency is *key* for the
efficiency of any program you write that deals with non-
trivial amounts of data

— an algorithm that tries to access data in blocks as much
as possible is said to have good locality of access

m In the exercise ...

— ... you will write two programs that compute exactly the
same function, but with very different locality of access

— let’s see which running time differences you measure

Compression

m Now we can understand why compression is important

— for information retrieval / search
— or for any application that deals with large amounts of data

= Namely

— consider a query

— assume that query needs 50 MB of data from disk

— then it takes 1 second just to read this data

— assume the data is stored compressed using only 5 MB

— now we can read it in just 0.1 seconds

— assume it takes us 0.1 seconds to decompress the data

— then we are still 5 times faster then without compression
(assuming that the internal computation is << 0.1 seconds)

Compressing inverted lists

m Example of an inverted list of document ids

3,17, 21, 24, 34, 38, 45, ..., 11876, 11899, 11913, ...
— numbers can become very large
— need 4 bytes to store each, for web search even more
— but we can also store the list like this

+3, +14, +4, +3, +10, +4, +7, ..., +12, +23, +14, ...
— this is called gap-encoding
— works as long as we process the lists from left to right
— now we have a sequence of mostly small numbers

— need a scheme which stores small numbers in few bits

— such a scheme is called universal encoding — next slide

Universal encoding

m Goal of universal encoding

— store a number in x in ~ log, x bits

— less is not possible, why? — Exercise
m Elias code

— write the number x to be encoded in binary
— prepend z zeroes, where z = floor(log, x)

— examples

Prefix Freeness

m For our purposes, codes should be prefix free

— prefix free = no encoding of a symbol must be a prefix
of an encoding of some other symbol

— assume the following code (which is not prefix-free)
A encoded by 1, B encoded by 11
now what does the sequence 1111 encode?
could be AAAA or ABA or BAA or AAB or BB

— for a prefix-free code, decoding is unambiguous

— the Elias code is prefix-free — Exercise

— and so are all the codes we will consider in this lecture

Elias-Gamma Encoding

m Elias encoding

— uses ~ 2 log, x bits to encode a number x
— that is about a factor of 2 off the optimum

— the reason is the prepended zeroes (unary encoding)

m Elias-Gamma encoding

— encode the prepended zeroes with Elias

— show example

—now log, x + 2 - log, log, x bits
— this can be iterated — log2 x + 2 Iogz(k) X bits

— what is the optimal k? — EXxercise

Entropy Encoding

m What if the numbers are not in sorted order

— or not numbers at all but just symbols
CCBADBBABBCBBCBD

m Entropy encoding

— give each number a code corresponding to its frequency
— frequencies in our example: A:2 B: 8 C: 4 D: 2

— prefix-free codes: B—1 C— 01 D — 0010 A — 0001
—requires8:-1+4:-2+2-4+ 2-4 =32 bits

— that is 2 bits / symbol on average

— better than the obvious 3-bit code

— but is it the best we can get?

Definition of Entropy

= Entropy
— defined for a discrete random variable X
(that is, for a probability distribution with finite range)
— assume w.l.0.g that X is from the range {1, ..., m}
— let p; = Prob(X = i)
— then the entropy of X is written and defined as
H(X) = - 2 i=1,.m Pi " log p;
m Examples
» equidistribution: p; = 1/n = H =logy n

» deterministic: p; = 1, all others0 —» H =0

intuitively: entropy = average #bits to encode a symbol

Source Coding Theorem

m By Claude Shannon, 1948

— let X be random variable with finite range
— let C be a (binary) code for the possible values
C(x) = code for value x from the range
L(x) = length of that code
— Then
E[L(X)] =2 H(X)
E[LX)] £ HX) +1

Claude Shannon
*1916 Michigan
12001 Massachusetts

Proof of Source Coding Theorem

m Prove lower bound, give hints on upper bound

m Key: the Kraft inequality

Entropy Encoding © Universal Encoding

m Recall

— entropy-optimal encoding gives a code with log, 1/p(x)
bits to a symbol which occurs with probability p(x)

— optimal universal encoding gives a code with c - log, x +
O(1) bits to a positive integer x

m Therefore, by the source code theorem

— universal encoding is the entropy-optimal code when
number x occurs with probability ~ 1 / x©

— for example, the Elias code is optimal when number x
occurs with probability ~ 1 / X2

Golomb encoding

m By Solomon Golomb, 1966

— comes with a parameter M (modulus)

— write positive integer x as q-M +r

—where g=xdivM and r=x mod M

— the codeword for x is then the concatenation of
» the quotient g written in unary with Os
» a single 1 (as a delimiter)
» the remainder r written in binary

— examples

Solomon Golomb
*1932 Maryland

Golomb Encoding — Analysis

m Show that Golomb encoding is optimal

— for gap-encoding inverted lists

— assuming the doc ids in a list of size m are a random
subset of size m of all doc ids 1..n

Simpler encodings — Variable Byte

m Variable byte encoding
— always use 8 - x bits — codes aligned to byte boundaries
— most significant bit of byte indicates whether code continues
— examples

— advantages:
» Simple
» faster to decompress than non-byte aligned code

Simpler encodings — Simple9

= Simple-9 Encoding (Anh and Moffat, 2005)

— align to full machine words (used to be: 4-byte ints)
— each int is split into two parts x (4 bits) and y (28 bits)
— X says how vy is to be interpreted
— depending on vy, x is interpreted as
» 14 (small) numbers of 2 bits each, or
» 9 (small) numbers of 3 bits each, or

» 1 number of 28 bits

— advantage: decompression of a whole 4-byte int can be hard-
coded for each possible x

— this gives a super fast decompression
— compression ratio is not optimal but ok

