
S h E iSearch Engines
WS 2009 / 2010

Lecture 4, Thursday November 12th, 2009
(IO and Cache Efficiency Compression)(IO- and Cache-Efficiency, Compression)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Goals

Learn why compression is important

– cache efficiency: sequential vs. random access to memory

– IO-efficiency: sequential vs. random access to diskIO efficiency: sequential vs. random access to disk

Learn about various compression schemes

Eli G l b V i bl B t Si l 9– Elias, Golomb, Variable Byte, Simple-9

Learn some important theoretical foundations

– entropy = optimal compressibility of data

– which scheme is optimal under which circumstances?

– how fast can one compress / decompress?

IO-Efficiency (IO = Input / Output)y (p p)

Sequential vs. random access to disk

– typical disk transfer rate is 50 MB / second

– typical disk seek time is 5 millisecondstypical disk seek time is 5 milliseconds

This means that

h it d f d t i l th t it d t– .. when we write code for data is so large that it does not
completely fit into memory (as is typical for search apps) …

then we must take great care that whenever we read from (or– then we must take great care that whenever we read from (or
write to) disk, we actually read (or write) big *blocks of data*

– an algorithm which does that is called IO-efficientan algorithm which does that is called IO efficient

– more formally next slide

IO-Efficiency — Formalizationy

Standard RAM model (RAM = random access machine)

– count the number of operations

one operation = an arithmetic operation, read/write aone operation an arithmetic operation, read/write a
single memory cell, etc.

– for example, sorting n integers needs O(n · log n) operationsp , g g (g) p

IO-Model or: External memory model

data is read / written in blocks of B contiguous bytes– data is read / written in blocks of B contiguous bytes

– count the number of block reads / write

i ll th ti / t ti l t– ignore all other operations / computational costs

– for example, the IO-efficiency of sorting is O(n/B · logM/B n/B)

were M is the size of the main memory briefly explain bound

Cache-Efficiencyy

Basic functioning of a cache draw interactively

Comparison: Disk / Memoryp y

Both have in common that

– sequential access is much more efficient than random access

The ratios are very different thoughThe ratios are very different though

– disk

50 MB / d t f t~ 50 MB / second transfer rate

~ 5 milliseconds seek time

this implies an optimal block size of ~ 250 KB

– memory

~ 1 GB / second sequential read

~ 100 nanoseconds for a random access / cache miss

this implies an optimal block size of ~ 100 bytes

IO / Cache Efficiencyy

Understand

– considering IO and cache efficiency is *key* for the
efficiency of any program you write that deals with non-
trivial amounts of data

– an algorithm that tries to access data in blocks as much
ibl i id t h d l lit fas possible is said to have good locality of access

In the exercise …

– … you will write two programs that compute exactly the
same function, but with very different locality of access

– let’s see which running time differences you measure

Compressionp

Now we can understand why compression is important
– for information retrieval / search

– or for any application that deals with large amounts of data

Namely
– consider a queryq y

– assume that query needs 50 MB of data from disk

– then it takes 1 second just to read this dataj

– assume the data is stored compressed using only 5 MB

– now we can read it in just 0.1 secondsj

– assume it takes us 0.1 seconds to decompress the data

– then we are still 5 times faster then without compression

(assuming that the internal computation is << 0.1 seconds)

Compressing inverted listsp g

Example of an inverted list of document ids

3, 17, 21, 24, 34, 38, 45, …, 11876, 11899, 11913, …

– numbers can become very large– numbers can become very large

– need 4 bytes to store each, for web search even more

b t e can also sto e the list like this– but we can also store the list like this

+3, +14, +4, +3, +10, +4, +7, …, +12, +23, +14, …

– this is called gap-encoding

– works as long as we process the lists from left to right

– now we have a sequence of mostly small numbers

– need a scheme which stores small numbers in few bits

– such a scheme is called universal encoding next slide

Universal encodingg

Goal of universal encoding

– store a number in x in ~ log2 x bits

– less is not possible, why? Exerciseless is not possible, why? Exercise

Elias code

it th b t b d d i bi– write the number x to be encoded in binary

– prepend z zeroes, where z = floor(log2 x)

– examples

Prefix Freeness

For our purposes, codes should be prefix free

– prefix free = no encoding of a symbol must be a prefix
of an encoding of some other symbol

– assume the following code (which is not prefix-free)

A encoded by 1, B encoded by 11

now what does the sequence 1111 encode?

could be AAAA or ABA or BAA or AAB or BB

– for a prefix-free code, decoding is unambiguous

– the Elias code is prefix-free Exercisep

– and so are all the codes we will consider in this lecture

Elias-Gamma Encodingg

Elias encoding

– uses ~ 2 log2 x bits to encode a number x

– that is about a factor of 2 off the optimum

– the reason is the prepended zeroes (unary encoding)

Elias-Gamma encodingElias Gamma encoding

– encode the prepended zeroes with Elias

h l– show example

– now log2 x + 2 · log2 log2 x bits

– this can be iterated log2 x + 2 log2
(k) x bits

– what is the optimal k? Exercise

Entropy Encodingpy g

What if the numbers are not in sorted order

– or not numbers at all but just symbols

C C B A D B B A B B C B B C B DC C B A D B B A B B C B B C B D

Entropy encoding

i h b d di t it f– give each number a code corresponding to its frequency

– frequencies in our example: A: 2 B: 8 C: 4 D: 2

– prefix-free codes: B 1 C 01 D 0010 A 0001

– requires 8 · 1 + 4 · 2 + 2 · 4 + 2 · 4 = 32 bits

– that is 2 bits / symbol on average

– better than the obvious 3-bit code

– but is it the best we can get?

Definition of Entropypy

Entropy

– defined for a discrete random variable X

(that is, for a probability distribution with finite range)

– assume w.l.o.g that X is from the range {1, …, m}

– let pi = Prob(X = i)i

– then the entropy of X is written and defined as

H(X) = - Σ i 1 m pi · log piH(X) Σ i=1,…m pi log pi

Examples

equidistribution: pi = 1/n H = log2 n

deterministic: pi = 1, all others 0 H = 0

intuitively: entropy = average #bits to encode a symbol

Source Coding Theoremg

By Claude Shannon, 1948

– let X be random variable with finite range

– let C be a (binary) code for the possible values

C(x) = code for value x from the range

L(x) = length of that code () g

– Then

E[L(X)] ≥ H(X)E[L(X)] ≥ H(X)

E[L(X)] ≤ H(X) + 1

Claude Shannon
*1916 Michigan1916 Michigan

†2001 Massachusetts

Proof of Source Coding Theoremg

Prove lower bound, give hints on upper bound

Key: the Kraft inequality

Entropy Encoding Universal Encodingpy g g

Recall

– entropy-optimal encoding gives a code with log2 1/p(x)
bits to a symbol which occurs with probability p(x)

– optimal universal encoding gives a code with c · log2 x +
O(1) bits to a positive integer x

Therefore, by the source code theorem

– universal encoding is the entropy-optimal code when
number x occurs with probability ~ 1 / xc

– for example, the Elias code is optimal when number x
ith b bilit 1 / 2occurs with probability ~ 1 / x2

Golomb encodingg

By Solomon Golomb, 1966

– comes with a parameter M (modulus)

– write positive integer x as q · M + rwrite positive integer x as q M + r

– where q = x div M and r = x mod M

– the codeword for x is then the concatenation of– the codeword for x is then the concatenation of

the quotient q written in unary with 0s

a single 1 (as a delimiter)a single 1 (as a delimiter)

the remainder r written in binary

l– examples

l l bSolomon Golomb
*1932 Maryland

Golomb Encoding — Analysisg y

Show that Golomb encoding is optimal

– for gap-encoding inverted lists

– assuming the doc ids in a list of size m are a randomassuming the doc ids in a list of size m are a random
subset of size m of all doc ids 1..n

Simpler encodings — Variable Bytep g y

Variable byte encoding
– always use 8 · x bits codes aligned to byte boundaries

– most significant bit of byte indicates whether code continuesg y

– examples

– advantages:

simple

faster to decompress than non-byte aligned code

Simpler encodings — Simple9p g p

Simple-9 Encoding (Anh and Moffat, 2005)
– align to full machine words (used to be: 4-byte ints)

– each int is split into two parts x (4 bits) and y (28 bits)

– x says how y is to be interpreted

– depending on y, x is interpreted as

14 (small) numbers of 2 bits each, or

9 (small) numbers of 3 bits each, or

…

1 number of 28 bits

– advantage: decompression of a whole 4-byte int can be hard-
coded for each possible x

this gives a super fast decompression– this gives a super fast decompression

– compression ratio is not optimal but ok

