Search Engines WS 2009 / 2010

Lecture 4, Thursday November 12 ${ }^{\text {th }}, 2009$

 (IO- and Cache-Efficiency, Compression)Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Goals

■ Learn why compression is important

- cache efficiency: sequential vs. random access to memory
- IO-efficiency: sequential vs. random access to disk
- Learn about various compression schemes
- Elias, Golomb, Variable Byte, Simple-9

■ Learn some important theoretical foundations

- entropy $=$ optimal compressibility of data
- which scheme is optimal under which circumstances?
- how fast can one compress / decompress?

IO-Efficiency (IO = Input / Output)

- Sequential vs. random access to disk
- typical disk transfer rate is 50 MB / second
- typical disk seek time is 5 milliseconds
- This means that
- .. when we write code for data is so large that it does not completely fit into memory (as is typical for search apps) ...
- then we must take great care that whenever we read from (or write to) disk, we actually read (or write) big *blocks of data*
- an algorithm which does that is called IO-efficient
- more formally \rightarrow next slide

IO-Efficiency - Formalization

■ Standard RAM model (RAM = random access machine)

- count the number of operations
- one operation = an arithmetic operation, read/write a single memory cell, etc.
- for example, sorting n integers needs $O(n \cdot \log n)$ operations

■ IO-Model or: External memory model

- data is read / written in blocks of B contiguous bytes
- count the number of block reads / write
- ignore all other operations / computational costs
- for example, the IO-efficiency of sorting is $O\left(n / B \cdot \log _{M / B} n / B\right)$ were M is the size of the main memory briefly explain bound

Cache-Efficiency

- Basic functioning of a cache
draw interactively

Comparison: Disk / Memory

- Both have in common that
- sequential access is much more efficient than random access

■ The ratios are very different though

- disk
- ~ $50 \mathrm{MB} /$ second transfer rate
- ~ 5 milliseconds seek time
- this implies an optimal block size of $\sim 250 \mathrm{~KB}$
- memory
- ~ 1 GB / second sequential read
- ~ 100 nanoseconds for a random access / cache miss
- this implies an optimal block size of ~ 100 bytes

IO / Cache Efficiency

- Understand
- considering IO and cache efficiency is *key* for the efficiency of any program you write that deals with nontrivial amounts of data
- an algorithm that tries to access data in blocks as much as possible is said to have good locality of access
- In the exercise ...
- ... you will write two programs that compute exactly the same function, but with very different locality of access
- let's see which running time differences you measure

Compression

- Now we can understand why compression is important
- for information retrieval / search
- or for any application that deals with large amounts of data

■ Namely

- consider a query
- assume that query needs 50 MB of data from disk
- then it takes 1 second just to read this data
- assume the data is stored compressed using only 5 MB
- now we can read it in just 0.1 seconds
- assume it takes us 0.1 seconds to decompress the data
- then we are still 5 times faster then without compression (assuming that the internal computation is $\ll 0.1$ seconds)

Compressing inverted lists

- Example of an inverted list of document ids

$$
3,17,21,24,34,38,45, \ldots, 11876,11899,11913, \ldots
$$

- numbers can become very large
- need 4 bytes to store each, for web search even more
- but we can also store the list like this

$$
+3,+14,+4,+3,+10,+4,+7, \ldots,+12,+23,+14, \ldots
$$

- this is called gap-encoding
- works as long as we process the lists from left to right
- now we have a sequence of mostly small numbers
- need a scheme which stores small numbers in few bits
- such a scheme is called universal encoding \rightarrow next slide

Universal encoding

- Goal of universal encoding
- store a number in x in $\sim \log _{2} x$ bits
- less is not possible, why?
\rightarrow Exercise
- Elias code
- write the number x to be encoded in binary
- prepend z zeroes, where $z=$ floor $\left(\log _{2} x\right)$
- examples

Prefix Freeness

- For our purposes, codes should be prefix free
- prefix free = no encoding of a symbol must be a prefix of an encoding of some other symbol
- assume the following code (which is not prefix-free)
- A encoded by 1, B encoded by 11
- now what does the sequence 1111 encode?
- could be AAAA or ABA or BAA or AAB or BB
- for a prefix-free code, decoding is unambiguous
- the Elias code is prefix-free \rightarrow Exercise
- and so are all the codes we will consider in this lecture

Elias-Gamma Encoding

- Elias encoding
- uses $\sim 2 \log _{2} x$ bits to encode a number x
- that is about a factor of 2 off the optimum
- the reason is the prepended zeroes (unary encoding)
- Elias-Gamma encoding
- encode the prepended zeroes with Elias
- show example
- now $\log _{2} x+2 \cdot \log _{2} \log _{2} x$ bits
- this can be iterated $\rightarrow \log 2 x+2 \log _{2}(k) x$ bits
- what is the optimal $k ? \quad \rightarrow$ Exercise

Entropy Encoding

■ What if the numbers are not in sorted order

- or not numbers at all but just symbols
C C B A D B B A B B C B B C B D
- Entropy encoding
- give each number a code corresponding to its frequency
- frequencies in our example: A: 2 B: 8 C: 4 D: 2
- prefix-free codes: $\mathrm{B} \rightarrow 1 \mathrm{C} \rightarrow 01 \mathrm{D} \rightarrow 0010 \mathrm{~A} \rightarrow 0001$
- requires $8 \cdot 1+4 \cdot 2+2 \cdot 4+2 \cdot 4=32$ bits
- that is 2 bits / symbol on average
- better than the obvious 3-bit code
- but is it the best we can get?

Definition of Entropy

■ Entropy

- defined for a discrete random variable X
(that is, for a probability distribution with finite range)
- assume w.l.o.g that X is from the range $\{1, \ldots, m\}$
- let $p_{i}=\operatorname{Prob}(X=i)$
- then the entropy of X is written and defined as

$$
H(X)=-\sum_{i=1, \ldots m} p_{i} \cdot \log p_{i}
$$

- Examples
- equidistribution: $p_{i}=1 / n \rightarrow H=\log _{2} n$
- deterministic: $\mathrm{p}_{\mathrm{i}}=1$, all others $0 \rightarrow \mathrm{H}=0$
intuitively: entropy = average \#bits to encode a symbol

Source Coding Theorem

- By Claude Shannon, 1948
- let X be random variable with finite range
- let C be a (binary) code for the possible values $C(x)=$ code for value x from the range $L(x)=$ length of that code
- Then

$$
\begin{aligned}
& \mathrm{E}[\mathrm{~L}(\mathrm{X})] \geq \mathrm{H}(\mathrm{X}) \\
& \mathrm{E}[\mathrm{~L}(\mathrm{X})] \leq \mathrm{H}(\mathrm{X})+1
\end{aligned}
$$

Claude Shannon
*1916 Michigan
†2001 Massachusetts

Proof of Source Coding Theorem

■ Prove lower bound, give hints on upper bound

- Key: the Kraft inequality

Entropy Encoding \leftrightarrow Universal Encoding

- Recall
- entropy-optimal encoding gives a code with $\log _{2} 1 / p(x)$ bits to a symbol which occurs with probability $p(x)$
- optimal universal encoding gives a code with $c \cdot \log _{2} x+$ $O(1)$ bits to a positive integer x

■ Therefore, by the source code theorem

- universal encoding is the entropy-optimal code when number x occurs with probability $\sim 1 / x^{C}$
- for example, the Elias code is optimal when number x occurs with probability $\sim 1 / x^{2}$

Golomb encoding

■ By Solomon Golomb, 1966

- comes with a parameter M (modulus)
- write positive integer x as $q \cdot M+r$
- where $q=x \operatorname{div} M$ and $r=x \bmod M$
- the codeword for x is then the concatenation of
- the quotient q written in unary with 0 s
- a single 1 (as a delimiter)
- the remainder r written in binary
- examples

Solomon Golomb *1932 Maryland

Golomb Encoding - Analysis

■ Show that Golomb encoding is optimal

- for gap-encoding inverted lists
- assuming the doc ids in a list of size m are a random subset of size m of all doc ids $1 . . n$

Simpler encodings - Variable Byte

■ Variable byte encoding

- always use $8 \cdot x$ bits \rightarrow codes aligned to byte boundaries
- most significant bit of byte indicates whether code continues
- examples
- advantages:
- simple
- faster to decompress than non-byte aligned code

Simpler encodings - Simple9

- Simple-9 Encoding (Anh and Moffat, 2005)
- align to full machine words (used to be: 4-byte ints)
- each int is split into two parts x (4 bits) and y (28 bits)
- x says how y is to be interpreted
- depending on y, x is interpreted as
- 14 (small) numbers of 2 bits each, or
- 9 (small) numbers of 3 bits each, or
- 1 number of 28 bits
- advantage: decompression of a whole 4-byte int can be hardcoded for each possible x
- this gives a super fast decompression
- compression ratio is not optimal but ok

