
S h E iSearch Engines
WS 2009 / 2010

Lecture 5, Thursday November 19th, 2009
(Efficient List Intersection)(Efficient List Intersection)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Overview of today’s Lecturey

List intersection

– you already know that it is at the core of what every search
engine does

(no fast search without fast list intersection)

– revisit standard (linear-time) algorithm() g

– prove a lower bound (how fast can we get)

– algorithm that achieves a matching upper boundalgorithm that achieves a matching upper bound

But before that

d i i f f G l b di f th l t l t– do missing proof for Golomb encoding from the last lecture

– talk a bit about the exercises (again)

Golomb encoding (again)g (g)

By Solomon Golomb, 1966

– comes with a parameter M (modulus)

– write positive integer x as q · M + rwrite positive integer x as q M + r

– where q = x div M and r = x mod M

– the codeword for x is then the concatenation of– the codeword for x is then the concatenation of

the quotient q written in unary with 0s

a single 1 (as a delimiter)a single 1 (as a delimiter)

the remainder r written in binary

l– examples

l l bSolomon Golomb
*1932 Maryland

Golomb Encoding — Analysisg y

Show that Golomb encoding is optimal

– for gap-encoding inverted lists

– assuming the doc ids in a list of size m are a randomassuming the doc ids in a list of size m are a random
subset of size m of all doc ids 1..n

[the proof]

On the exercises

Amount
– Should be less work this time

– Do you prefer theoretical or practical or a mix?

About the aspect of well-specifiedness
– I am aware that the exercises are often not fully specified

– this requires two things from your side

apply your common sense

in the case of doubt ask (intelligently)

– these are two super-important skills to learn

real-life (research) problems are always ill-specifed

(and actually much worse than in the exercises!)

common sense + communication are a must

List Intersection — Standard Algorithmg

For two lists A, B of sizes n and m:

[pseudocode of standard algorithm]

Improving the Standard Algorithmp g g

Two “engineering” problems with the previous code

1. there is an if-statement for each iteration of the loop

why is that a problem?

modern processors do pipelining = execute future
instruction while current instruction is not yet finished

in the case of an if, the processor tries to predict which
part gets executed (so-called branch prediction)

if the prediction fails, the speculative execution of the
future instructions has to be rolled back

2. the if-condition is also quite complex

– costly to evaluate that in each iteration

List Intersection — Improved Versionp

This code is (or can be) significantly faster:

[pseudocode of improved algorithm]

List Intersection — Lower Bound

Can we do better than order n + m ?

– if we want to compute the *union* of the two lists, we
obviously can not

we have to output n + m elements in any case

– for intersection we obviously can for special cases

for example: largest element of one list is smaller
than smallest element of other list

then we can tell after one comparison that the
intersection is empty

how about the general case– how about the general case

Problem from now on

– “locate” element from one list in the other list

List Intersection — Improvement 1p

Let’s first try to improve on the standard algorithm

– what if one list is much smaller than the other list?

length of smaller list is k

length of larger list is m

– then we can binary search each element of the smaller
list in the larger list

[an illustration of this]

– complexity is ~ k · log2 mp y g2

– this is obviously better than k + m when k << m

List Intersection — Improvement 2p

Simple observation:

– if the previous element has been located at position i,
the next binary search need only look at positions ≥ i

[an illustration of this]

Does this help us?

in the best case: [short calculation]– in the best case:

i th t

[short calculation]

[h t l l ti]– in the worst case: [short calculation]

– in the “average” case: [short calculation]

List Intersection — Lower Bound

Recall the lower bound for sorting n integers

– there are n! possible outputs

– the algorithm has to distinguish between all of themthe algorithm has to distinguish between all of them

– each comparison distinguishes between two cases

– hence we need at least log2 n! comparisons– hence we need at least log2 n! comparisons

– by Stirling’s formula (n/e)n ≤ n! ≤ nn

hence log n! n log n– hence log2 n! ~ n · log n

– hence every comparison-based sorting algorithm has a
running time of Ω(n · log n)running time of Ω(n · log n)

– Note: not true for non-comparison based algorithms:

[explain by example 0-1 sequence]

List Intersection — Lower Bound

Let’s try the same for merging two lists A and B

– that is, locate each element from A in B

– again let k and m = number of elements in A and B resp.again let k and m number of elements in A and B resp.

– same argument: how many ways are there to locate the k
elements from A in the m elements from B

– observe: each such way corresponds to a tuple (i1,…, ik)
where 0 ≤ i1 ≤ … ≤ ik ≤ m

(ij is simply the location of the j-th element of A in B ,
location 0 means before the first element, location i > 0

ft th i th l t)means after the i-th element)

– how many such tuples are there?

List Intersection — Lower Bound

There is a similar quantity which is easy to count

– the number of tuples (i1,…, ik) where 1 ≤ i1 < … < ik ≤ n

– this is just the number of size-k subsets of {1,…,n}this is just the number of size k subsets of {1,…,n}

– and the number of those is n over k = n! / (k! · (n-k)!)

– which by Stirling’s formula is approximately (e·n/k)k– which by Stirling s formula is approximately (e·n/k)

[relate the two kinds of quantities + prove the lower bound]

List Intersection — Lower Bound

List Intersection — Matching Upper Boundg pp

Idea:

– after previous element from A has been located in B

– start search from that locationstart search from that location

– but try to search not much further than next location

trick: first *exponentional* search then binary search

[an illustration of this]

– trick: first *exponentional* search, then binary search

– if the difference from the previous to the next location is
d this can be done in time O(d)d, this can be done in time O(d)

Analysis of this algorithmy g

Terminology

– Let d1, …, dk be the gaps between the locations of the k
elements of A in B

(d1 = from beginning to first location)

– note that Σi di ≤ m = number of elements in Bi i

– then the time complexity of the algorithm is O(Σi log di)

[derive upper bound in terms of k and m][derive upper bound in terms of k and m]

