
S h E iSearch Engines
WS 2009 / 2010

Lecture 6, Thursday November 26th, 2009
(Prefix Search)(Prefix Search)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Overview of today’s Lecturey

Everything about Prefix Search

– how to realize it …

… using an ordinary inverted index… using an ordinary inverted index

– how to realize it efficiently …

using a special kind of index… using a special kind of index

– what all prefix search is good for

for example synonym searchfor example, synonym search

Prefix Search Demo

Obvious advantages

– type less

– find morefind more

– find out what words there are in the collection

Less obvious advantagesLess obvious advantages

– many advanced search features reduce to prefix search

– synonym search

– error tolerant search

– database-like search

– semantic search

Prefix Search via an Inverted Index

Binary search on the (sorted) vocabulary

– let the size of the vocabulary be n

– for example bas*

about
aware

– time ~ log2 n to find the first match (locate bas)

– time ~ log2 n to find the last match (locate bat)

banks
base
basedtime log2 n to find the last match (locate bat)

– so time ~ log2 n overall

– for n = 100 million ≈ 2^27 log2 n is 27

based
bases
basicsfor n = 100 million ≈ 2 27 … log2 n is 27

– one string comparison takes ≈ 1 µsec

so a fraction of 1 msec even for large vocabularies

basics
basis
bruno

– so a fraction of 1 msec even for large vocabularies

– but only works if vocabulary fits into memory

b t 100 illi d t k 1GB

cache
call
cases– but: 100 millions words take up ≈ 1GB cases
…

Permuterm Index

What if we allow the * in any place

– for example ba*s

– should find banks, bases, basics, and basisshould find banks, bases, basics, and basis

– no longer a range of words (worst case: * in the beginning)

– scanning the whole vocabulary is too expensive– scanning the whole vocabulary is too expensive

for n = 100 million 100 seconds

Id P t i dIdea: Permuterm index

– append a $ to each word

– add all permutations for each word

– for example, for base$ add each of

base$, ase$b, seba, ebas, $base

Permuterm Index

Assume three-word vocabulary with

– banks, base, basics

Permuterm indexPermuterm index

– simply all permutations sorted

each permutation points to the inverted list of the word– each permutation points to the inverted list of the word
of which it is a permutation
(no need to duplicate the lists for each permutation)

– now for the query ba*s find matches for s$ba*

Permuterm Index
Efficiency

bl b l b f f– blowup in vocabulary size is about a factor of 8

– a factor of 8 increases log2 n by 3

– so no problem for the binary searches

– but a very large vocabulary might not fit into memory anymore

– note that the size of the inverted lists remains the same

(we did not copy the lists, just pointed to them)

Data structure for very large vocabularies

– the B-Treethe B Tree

– with todays memory, depth 2 is usually enough

[maybe draw picture of B-tree on separate slide]

Permuterm Index

How about more than one * ?

– for example in*ma*tik

– should find informatikshould find informatik

Simple trick

fi t ll t * i i *tik– first collapse to one * as in in*tik

– we already know how to handle this query

– but this will find a (typically strict) superset of matches

– for example, will also find intervallarithmetik

– anyway, the number of matches will be relatively small

– so just go over them, and filter out the false positives

N-Gram Index

Can we do with less space than Permuterm?

– YES WE CAN!

Idea: Index not the words, but n-grams of the words

– n-grams of a word = the substrings of length n

– for example, the 3-grams of $informatik$ arefor example, the 3 grams of $informatik$ are

$inf, nfo, for, rma, mat, ati, tik, tik$

N gram IndexN-gram Index

– Variant 1: let each n-gram point to the words that contain it

– Variant 2: let each n-gram point to the union of the inverted
li t f th d id t i i itlists of the doc ids containing it

N-Gram Index
Why more space-efficient than Permuterm index?

b d– because many n-grams are common to many words

(whereas the permutations were unique)

– and anyway, the number of 3-grams is bounded

say 128 = 27 symbols which occur at all

then at most 221 3-grams with these symbols

How to query with the n-gram index?q y g

– for example, search in*tik

– contains n-grams $in tik and ik$contains n grams $in, tik, and ik$

– boolean query for $in AND tik AND ik$

again must post filter why?– again, must post-filter … why?

Merging the Inverted Listsg g

Whatever we do …

– … be it binary search, Permuterm, n-Gram index

– we end up with a large number of inverted listswe end up with a large number of inverted lists

(one for each word matching the wildcard query)

– these have to be merged– these have to be merged

(now it’s really merge, not intersection)

merging k sorted lists with a total of n elements– merging k sorted lists with a total of n elements

takes time n · log k

K-Way Mergey g

Algorithm

– for each of the k lists maintain the current position

– in each step determine the smallest of the elements atin each step determine the smallest of the elements at
the k current positions

– output that element and advance by one in that listp y

– requires the following data structure

at each point have k elementsat each point have k elements

be able to return the smallest of these … fast

and replace it with a new oneand replace it with a new one

this is called a (fixed-size) priority queue

Priority Queue of fixed size ky Q

A fixed size priority queue can be easily realized
with a heap data structure

– at each time maintain the heap property:p p p y

each element is larger than its parent

[show example of a heap with 8 elements]

Priority Queue of fixed size ky Q

Analysis

– the heap obviously achieves time ~ log k per replace-min

(a typical priority queue will support get-min, delete-min,(a typical priority queue will support get min, delete min,
and insert separately, but here we only need replace-min)

– so merging k lists with a total of n elements can be doneg g

in time k · log n

– could it possibly be done (asymptotically) faster?could it possibly be done (asymptotically) faster?

– No! (At least not comparison-based) Why?

– otherwise we could sort faster than n · log notherwise we could sort faster than n · log n

Efficiency of the Approaches so fary pp

Summary of what we have seen so far:
– space consumption can be an issue for Permuterm

– finding (a superset of) the matching words is very fast

– but then we have to merge all these inverted lists

– that is very, very, very expensive

cost is C · log2 k · total size of inverted lists

k can easily become 128 log2 k = 7

C ≈ 5 compared to a simple scan C · log2 k ≈ 50

total size of inverted are a factor of, say, 2 - 5

larger than a typical inverted list of a single word

that is, prefix search several 100 times more expensive

than an ordinary keyword search

The HYB index

HYB is the index behind our CompleteSearch engine

Simple idea behind HYB

– precompute inverted lists for unions of wordsp p

– in the following let words be capital letters: A, B, C, …

– along with each doc id, we now also have to store the wordalong with each doc id, we now also have to store the word
because of which that doc id is in the list

1 3 3 5 5 6 7 8 8 9 11 11 11 12 13 15list for 1 3 3 5 5 6 7 8 8 9 11 11 11 12 13 15
D A C A B A C A D A A B C A C A

list for
A-D

2 2 3 3 4 4 7 7 8 8 9 9 11li t f 2 2 3 3 4 4 7 7 8 8 9 9 11
E F G J H I I E F G H J I

list for
E-J

2 3 6 6 6 8 9 9 9 0 01 1 2 3 4 5 6 6 6 8 9 9 9 10 10
L N M N N K L M N M K L M K L

list for
K-N

The HYB Index

1 3 3 5 5 6 7 8 8 9 11 11 11 12 13 15
D A C A B A C A D A A B C A C A

list for
A D D A C A B A C A D A A B C A C AA-D

2 2 3 3 4 4 7 7 8 8 9 9 11list for
E F G J H I I E F G H J IE-J

1 1 2 3 4 5 6 6 6 8 9 9 9 10 10list for

How do we do prefix search here?

L N M N N K L M N M K L M K LK-N

How do we do prefix search here?
– simply find the enclosing blocks (typically only one)

scan the block and filter out false positives– scan the block and filter out false-positives

(that’s why we need to store the words along with the doc ids)

we are avoiding the merge overhead here– we are avoiding the merge overhead here

(which gave the bulk of the cost before: a factor of ≈ 50)

The HYB Index

1 3 3 5 5 6 7 8 8 9 11 11 11 12 13 15list for
D A C A B A C A D A A B C A C AA-D

2 2 3 3 4 4 7 7 8 8 9 9 11list for
E F G J H I I E F G H J I

s o
E-J

1 1 2 3 4 5 6 6 6 8 9 9 9 10 10list for 1 1 2 3 4 5 6 6 6 8 9 9 9 10 10
L N M N N K L M N M K L M K L

list for
K-N

Timewise, this looks good …

– … but what about the space?p

– we know that lists of sorted doc ids can be compressed well

– but the list of words are going to completely spoil it, right?but the list of words are going to completely spoil it, right?

The HYB index — Space Analysisp y

Let us analyze

– the entropy of the ordinary inverted index (INV)

– the entropy of the HYB index

– (we already know that the inverted index has great space
complexity)

– (we already know that we can achieve compression close to the
entropy)

Notation

– let ni denote the size of the inverted list of the i-th wordi

– so the sum of all ni is just N = total number of all occurrences

– we will not assume anything about the niwe will not assume anything about the ni

– let n be the total number of documents

Entropy of the INV indexpy

We will show that the entropy of INV is close to

Σ ni · (1/ln 2 + log2(n/ni))

[prove it live]

Entropy of the HYB indexpy

We will show that the entropy of HYB is at most

Σ ni · ((1+ε)/ln 2 + log2(n/ni))

where ε · n is the average number of doc ids in a block

[prove it live]

Synonym Searchy y

Naïve solution

– have a synonym dictionary = thesaurus

– at query time look up each query word in the thesaurus

– if it’s there, replace it with a disjunction of all its synonyms

– for example uni AND studieren could becomefor example uni AND studieren could become

uni OR universität OR hochschule AND

studieren OR lernen OR abhängenstudieren OR lernen OR abhängen

– same problem as for prefix search

expanding the query is not hardexpanding the query is not hard

but, again, computing the union of all the inverted lists
(could again be very many) is very expensive(could again be very many) is very expensive

Synonym Searchy y

Idea: do it via prefix search

– give each group of synonyms a group id

– uni, universität, hochschule, etc. get the id 174

– studieren, lernen, abhängen, etc. get the id 99

– now in your vocabulary prepend the group id to each wordnow in your vocabulary prepend the group id to each word

syngroup:174:uni
syngroup:174:universität
syngroup:99:studieren

– at query time, determine the group id for each query

– and replace uni studieren by syngroup:174:* syngroup:99:*

– if you don’t want synonym search just replace the * by the
query word, as in syngroup:174:uni syngroup:99:studieren

Prefix Search is extremely universaly

Basically everything can be done with prefix search

– prefix search

– autocompletion

– synonym search

– error-tolerant search

– database-like search

– semantic search

– factorize arbitrarily large numbers

– failure-safe lecture recordingfailure safe lecture recording

– automatic exercise sheet solving

and many more– and many more …

