
S h E iSearch Engines
WS 2009 / 2010

Lecture 8, Thursday December 10th, 2009
(Error Tolerant Search)(Error-Tolerant Search)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Goal of Today’s Lecturey

Learn about error-tolerant search
– it’s about typing errors in the query and in the documents

– a natural word similarity measure: Levenshtein distance

definition

intuition

how to compute it (dynamic programming)

– given a query word and a large set of words, find the most
i il d() i th tsimilar word(s) in the set

– context-sensitive query correction (Did you mean?)

h lf hLast half hour:
– open discussion about the exercise sheets

– how much work they are, how hard, etc.

What is Error-Tolerant Search

We query a search engine and don’t get results

– … or few results

– for example: algoritm

– Reason 1: we misspelled the query (should be: algorithm)

– Reason 2: in the document(s) we are looking for, theReason 2: in the document(s) we are looking for, the
words are misspelled [show examples]

Solution for problem due to Reason 1p

– find words that are “similar” to the (misspelled) query words

Solution for problem due to Reason 2Solution for problem due to Reason 2

– find words that are “similar” to the (correctly spelled) query

in any case, we need to find “similar” words

Similarity Measuresy

Levenshtein distance a.k.a. Edit distance

– given two strings / words x and y

– consider the following transformations

replace a single character: alkorithm algorithm

insert a character: algoritm algorithminsert a character: algoritm algorithm

delete a character: allgorithm algorithm

– the Levenshtein or edit distance ED(x y) is then defined asthe Levenshtein or edit distance ED(x, y) is then defined as

the minimal number of transformation to get from x to y

for example: x = allgorithm y = aigorytmfor example: x = allgorithm y = aigorytm

then ED(x, y) = 4

more about other measures later

Efficient computationp

Terminology
– x(i) = the prefix of x of length i in particular, x(|x|) = x

– y(j) = the prefix of y of length j in particular, y(|y|) = y

ε denotes the empty word– ε denotes the empty word

Recursion
it th t t ED() i l f th ED– it seems that we can compute ED(x,y) recursively from the ED
of prefixes of x and y, namely

– ED(x(i), ε) = i and ED(ε, y(j)) = jED(x(i), ε) i and ED(ε, y(j)) j

– for i and j both > 0, we have ED(x(i), y(j)) = the minimum of

ED(x(i), y(j-1)) + 1 ~ insert y[j]((), y(j)) y[j]

ED(x(i-1), y(j)) + 1 ~ delete x[i]

ED(x(i-1), y(j-1)) + 1 ~ replace x[i] by y[j]

ED(x(i-1), y(j-1)) if x[i] = y[j]

An Examplep

Let’s compute ED(“bread”, “board”)

– assuming that the recursion from the previous slide is correct

(which we will prove on one of the next slides)(which we will prove on one of the next slides)

Time and Space Complexityp p y

Let |x| = n and |y| = m

– then the time complexity is O(n · m)

O(1) time per table entryO(1) time per table entry

and this seems hard to improve in the general case

– the space complexity is O(n · m)– the space complexity is O(n · m)

again O(1) space per table entry

but this can be easily improvedbut this can be easily improved

we can go column by column and only store the last column

b d l h lor we can go row by row and only store the last row

this gives a space complexity of O(min(n, m))

Correctness Proof

The recursion looks correct

– but it’s actually not easy to prove that it’s correct

– it is easy to prove that the recursion gives a possible
sequence of transformations …

… and thus an upper bound on the edit distance

– but it’s not clear that it gives an optimal sequence of
transformations

– I will give you the proof idea

– and a sketch of some parts

– one important part you will do as an exercise

Proof Outline

Lemma 1:
– in an optimal sequence of transformations, if a character is

inserted, it is not later deleted again or replaced [next slide]

Lemma 2:Lemma 2:
– a sequence of transformations for x y is called monotone if

the transformations on x occur at strictly increasing positionsthe transformations on x occur at strictly increasing positions
(except that the next operation after a delete may be at the
same position)

– the recursion computes an optimal monotone sequence of
transformations [slide after the next]

L 3Lemma 3:
– for each optimal sequence of transformations, there is a

monotone one with the same length [Exercise!]monotone one with the same length [Exercise!]

Proof Sketch of Lemma 1

Proof sketch of Lemma 1:

– if a character gets inserted and later deleted again, we can
remove both operations and get a shorter sequence

– if a character gets inserted and later replaced, we can
remove the replace and insert the replaced character right

d th t h taway, and thus get a shorter sequence

Proof Sketch of Lemma 2

Proof sketch of Lemma 2:
– proof is by induction on |x| + |y| = n + m

– Case 1: last transformation occurs at position |y|

then the previous transformation do one of

x(n) y(m-1) if last transformation was delete

x(n-1) y(m) if last transformation was insert

x(n-1) y(m-1) if last transformation was replace

and by way of induction these are optimal

– Case 2: last transformation occurs at position < |y|

then x[n] = y[m] and these transformations do

x(n-1) y(m-1)

and by way of induction this is optimal

Finding Similar Words in a Large Setg g

Given
– a query word q

– a large set of words Sg

– a threshold δ

FindFind
– all words in S with edit distance ≤ δ to the query word q

Naïve algorithmNaïve algorithm
– for each word in S compute the edit distance to q

one edit distance computation takes around 1 µsec– one edit distance computation takes around 1 µsec

– so for 10 million words in S 10 seconds

that is inacceptable as response time for a search engine– that is inacceptable as response time for a search engine

Filtering with a Permuterm Indexg

Given x and y with ED(x, y) ≤ δ

– then if x and y are not too short they have at least a
certain substring in common

– actually one can prove that there is a rotation x’ of x and
a rotation y’ of y such that x’ and y’ have a common
prefix of size at least L = ceil(max(|x|, |y|) / δ) – 1prefix of size at least L ceil(max(|x|, |y|) / δ) 1

[where ceil(…) means rounded upwards]

– it’s one of the exercises to prove this!– it s one of the exercises to prove this!

– here is an intuitive illustration of why this holds true:

Filtering with a Permuterm Indexg

This suggests the following algorithm

– build a Permuterm index for S

that is, compute all possible rotations of all words in S
and sort them

– let L be the size of a common prefix from the slide before

– then for each rotation of the query word q

let q’ be the prefix of size L of q

find all matches of q’* in the Permuterm index for S

– for all matches thus found, compute the actual edit distance, p

– this will find all words s with ED(q, s) ≤ δ

– let’s see by an example how effective the filtering islet s see by an example how effective the filtering is …

Filtering with a K-Gram Indexg

Let’s build a k-gram index for S
– that is, for each string of length k have a list of all words in

S containing that string as a substring, for example (k=2)

b b d b b d b dbo: aboard, about, boardroom, border, …

or: border, lord, morbid, sordid, …

d b d d b d b drd: aboard, ardent, boardroom, border, …

– take q = bord as an example query string

th i th li t b il t– then using the lists above, we can easily compute:

for each word s in S

th b f k d h ithe number of k-grams q and s have in common

for example: bord and boardroom …

h tl t 2 i (b d d)… have exactly two 2-grams in common (bo and rd)

Filtering with a K-Gram Indexg

Jaccard distance between two words x and y
– the Jaccard coefficient of two sets A and B is defined as

J(A, B) = |A n B| / |A u B|

– for example, for A = {1, 2, 3} and B = {2, 3, 4}

A n B = {2, 3}, A u B = {1, 2, 3, 4} J(A, B) = 1/2

– given two words x and y

let A be the set of k-grams of x

let B be the set of k-grams of y

then the k-gram Jaccard distance J(x, y) = J(A, B)

– for example, for x = bord and y = boardroom

A = {bo, or, rd}, |A n B| = 2 (last slide)

|A u B| = 3 + 8 – 2 = 9 J(x, y) = 2 / 9 ≈ 0.22

Filtering with a K-Gram Indexg
So scanning the inverted lists of the k-gram index …

kl ll d h d d b l– … quickly gives us all words with Jaccard distance below
a given threshold

unfortunately the Jaccard distance between two words does– unfortunately, the Jaccard distance between two words does
not always correspond well with their “intuitive” similarity

Example 1: J(“weigh” “weihg”) = 2 / 6 = 1/3 (too low)Example 1: J(weigh , weihg) = 2 / 6 = 1/3 (too low)

Example 2: J(“aster”, “terase”) = 3 / 6 = 1/2 (too high)

the k gram index can also be used to filter out words with too– the k-gram index can also be used to filter out words with too
large edit distance

if the edit distance between x and y is ≤ δif the edit distance between x and y is ≤ δ

then x’ and y’ must have at least

max(|x’| |y’|) 1 (δ 1) k k grams in commonmax(|x |,|y |) - 1 - (δ-1)·k k-grams in common

where x’ and y’ are x and y with k-1 # padded left and right

Context-Sensitive Query Correction Q y

The “Did you mean …?” you know from Google & Co
– the simplest way to realize this is as follows

– for each query word, find the most similar words as before

example query: infomatik fribourg

infomatik: informatik, information, informatics

f ib f ib f ib f i dbfribourg: freiburg, freiburger, friedburg

– now try out all combinations and suggest the “best” one to the
user, where “best” can mean:user, where best can mean:

retrieves the largest number of hits

is most frequent in the query logq q y g

a combination of the two

– trying out all combinations is too expensive in practice

– simple trick: precompute statistics about co-occurrence of words

