Search Engines WS 2009 / 2010

Lecture 8, Thursday December $10^{\text {th }}, 2009$ (Error-Tolerant Search)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Goal of Today's Lecture

- Learn about error-tolerant search
- it's about typing errors in the query and in the documents
- a natural word similarity measure: Levenshtein distance
- definition
- intuition
- how to compute it (dynamic programming)
- given a query word and a large set of words, find the most similar word(s) in the set
- context-sensitive query correction (Did you mean?)
- Last half hour:
- open discussion about the exercise sheets
- how much work they are, how hard, etc.

What is Error-Tolerant Search

- We query a search engine and don't get results
- ... or few results
- for example: algoritm
- Reason 1: we misspelled the query (should be: algorithm)
- Reason 2: in the document(s) we are looking for, the words are misspelled [show examples]
- Solution for problem due to Reason 1
- find words that are "similar" to the (misspelled) query words
- Solution for problem due to Reason 2
- find words that are "similar" to the (correctly spelled) query
in any case, we need to find "similar" words

Similarity Measures

■ Levenshtein distance a.k.a. Edit distance

- given two strings / words x and y
- consider the following transformations
- replace a single character: alkorithm \rightarrow algorithm
- insert a character: algoritm \rightarrow algorithm
- delete a character: allgorithm \rightarrow algorithm
- the Levenshtein or edit distance $\operatorname{ED}(x, y)$ is then defined as
- the minimal number of transformation to get from x to y
- for example: $x=$ allgorithm $y=$ aigorytm
- then $\operatorname{ED}(x, y)=4$

Efficient computation

- Terminology
$-x(i)=$ the prefix of x of length $i \quad$ in particular, $x(|x|)=x$
$-y(j)=$ the prefix of y of length $j \quad$ in particular, $y(|y|)=y$
$-\varepsilon$ denotes the empty word
- Recursion
- it seems that we can compute $E D(x, y)$ recursively from the ED of prefixes of x and y, namely
$-E D(x(i), \varepsilon)=i \quad$ and $E D(\varepsilon, y(j))=j$
- for i and j both >0, we have $\operatorname{ED}(\mathrm{x}(\mathrm{i}), \mathrm{y}(\mathrm{j}))=$ the minimum of
- $E D(x(i), y(j-1))+1 \quad \sim$ insert $y[j]$
- $E D(x(i-1), y(j))+1 \sim$ delete $x[i]$
- $E D(x(i-1), y(j-1))+1 \quad \sim$ replace $x[i]$ by $y[j]$
- $E D(x(i-1), y(j-1)) \quad$ if $x[i]=y[j]$

An Example

■ Let's compute ED("bread", "board")

- assuming that the recursion from the previous slide is correct (which we will prove on one of the next slides)

Time and Space Complexity

■ Let $|\mathrm{x}|=\mathrm{n}$ and $|\mathrm{y}|=\mathrm{m}$

- then the time complexity is $\mathrm{O}(\mathrm{n} \cdot \mathrm{m})$
- $\mathrm{O}(1)$ time per table entry
- and this seems hard to improve in the general case
- the space complexity is $\mathrm{O}(\mathrm{n} \cdot \mathrm{m})$
- again $O(1)$ space per table entry
- but this can be easily improved
- we can go column by column and only store the last column
- or we can go row by row and only store the last row
- this gives a space complexity of $O(\min (n, m))$

Correctness Proof

- The recursion looks correct
- but it's actually not easy to prove that it's correct
- it is easy to prove that the recursion gives a possible sequence of transformations ...
... and thus an upper bound on the edit distance
- but it's not clear that it gives an optimal sequence of transformations
- I will give you the proof idea
- and a sketch of some parts
- one important part you will do as an exercise

Proof Outline

- Lemma 1:
- in an optimal sequence of transformations, if a character is inserted, it is not later deleted again or replaced [next slide]
■ Lemma 2:
- a sequence of transformations for $x \rightarrow y$ is called monotone if the transformations on x occur at strictly increasing positions (except that the next operation after a delete may be at the same position)
- the recursion computes an optimal monotone sequence of transformations [slide after the next]
- Lemma 3:
- for each optimal sequence of transformations, there is a monotone one with the same length
[Exercise!]

Proof Sketch of Lemma 1

■ Proof sketch of Lemma 1:

- if a character gets inserted and later deleted again, we can remove both operations and get a shorter sequence
- if a character gets inserted and later replaced, we can remove the replace and insert the replaced character right away, and thus get a shorter sequence

Proof Sketch of Lemma 2

■ Proof sketch of Lemma 2:

- proof is by induction on $|x|+|y|=n+m$
- Case 1: last transformation occurs at position $|y|$
- then the previous transformation do one of
- $x(n) \rightarrow y(m-1) \quad$ if last transformation was delete
- $x(n-1) \rightarrow y(m) \quad$ if last transformation was insert
- $x(n-1) \rightarrow y(m-1)$ if last transformation was replace
- and by way of induction these are optimal
- Case 2: last transformation occurs at position < |y|
- then $x[n]=y[m]$ and these transformations do
- $x(n-1) \rightarrow y(m-1)$
- and by way of induction this is optimal

Finding Similar Words in a Large Set

■ Given

- a query word q
- a large set of words S
- a threshold δ
- Find
- all words in S with edit distance $\leq \delta$ to the query word q

■ Naïve algorithm

- for each word in S compute the edit distance to q
- one edit distance computation takes around $1 \mu \mathrm{sec}$
- so for 10 million words in $\mathrm{S} \rightarrow 10$ seconds
- that is inacceptable as response time for a search engine

Filtering with a Permuterm Index

- Given x and y with $\operatorname{ED}(x, y) \leq \delta$
- then if x and y are not too short they have at least a certain substring in common
- actually one can prove that there is a rotation x^{\prime} of x and a rotation y^{\prime} of y such that x^{\prime} and y^{\prime} have a common prefix of size at least $L=\operatorname{ceil}(\max (|x|,|y|) / \delta)<1$
[where ceil(...) means rounded upwards]
- it's one of the exercises to prove this!
- here is an intuitive illustration of why this holds true:
assume $|X|>\mid$ y \mid

$$
\delta=3
$$

Filtering with a Permuterm Index

- This suggests the following algorithm
- build a Permuterm index for S

$$
\delta=2\left[\frac{9}{2}-1=4\right.
$$

- that is, compute all possible rotations of all words in S and sort them
- let L be the size of a common prefix from the slide before
- then for each rotation of the query word q
- let q^{\prime} be the prefix of size L of q
- find all matches of $q^{* *}$ in the Permuterm index for S
- for all matches thus found, compute the actual edit distance
- this will find all words s with $\operatorname{ED}(q, s) \leq \delta$
- let's see by an example how effective the filtering is ...

Filtering with a K-Gram Index

- Let's build a k-gram index for S
- that is, for each string of length k have a list of all words in S containing that string as a substring, for example ($k=2$) bo: aboard, about, boardroom, border, ...
or: border, lord, morbid, sordid, ...
rd: aboard, ardent, boardroom, border, ...
- take $q=$ bord as an example query string
- then using the lists above, we can easily compute:
- for each word s in S
- the number of k-grams q and s have in common
- for example: bord and boardroom ...
- ... have exactly two 2-grams in common (bo and rd)

Filtering with a K-Gram Index

- Jaccard distance between two words x and y
- the Jaccard coefficient of two sets A and B is defined as $J(A, B)=|A \cap B| /|A \cup B|$
- for example, for $A=\{1,2,3\}$ and $B=\{2,3,4\}$

$$
A \cap B=\{2,3\}, A \cup B=\{1,2,3,4\} \rightarrow J(A, B)=1 / 2
$$

- given two words x and y
- let A be the set of k-grams of x
- let B be the set of k-grams of y
- then the k-gram Jaccard distance $J(x, y)=J(A, B)$
- for example, for $x=$ bord and $y=$ boardroom
- $A=\{b o, o r, r d\},|A \cap B|=2$ (last slide)
- $\mid A$ u $B \mid=3+8-2=9 \rightarrow J(x, y)=2 / 9 \approx 0.22$

Filtering with a K-Gram Index

■ So scanning the inverted lists of the k-gram index ...

- ... quickly gives us all words with Jaccard distance below a given threshold
- unfortunately, the Jaccard distance between two words does not always correspond well with their "intuitive" similarity

Example 1: J("weigh", "weihg") = $2 / 6=1 / 3$ (too low)
Example 2: J("aster", "terase") $=3 / 6=1 / 2$ (too high)

- the k-gram index can also be used to filter out words with too large edit distance
- if the edit distance between x and y is $\leq \delta$
- then x^{\prime} and y^{\prime} must have at least

$$
\max \left(\left|x^{\prime}\right|,\left|y^{\prime}\right|\right)-1-(\delta-1) \cdot k \text { k-grams in common }
$$

where x^{\prime} and y^{\prime} are x and y with $k-1$ \# padded left and right

Context-Sensitive Query Correction

■ The "Did you mean ...?" you know from Google \& Co

- the simplest way to realize this is as follows
- for each query word, find the most similar words as before example query: infomatik fribourg
infomatik: informatik, information, informatics
fribourg: freiburg, freiburger, friedburg
- now try out all combinations and suggest the "best" one to the user, where "best" can mean:
- retrieves the largest number of hits
- is most frequent in the query log
- a combination of the two
- trying out all combinations is too expensive in practice
- simple trick: precompute statistics about co-occurrence of words

