Search Engines WS 2009 / 2010

Lecture 8, Thursday December 10th, 2009 (Error-Tolerant Search)

> Prof. Dr. Hannah Bast Chair of Algorithms and Data Structures Department of Computer Science University of Freiburg

REIBURG

Goal of Today's Lecture

UNI FREIBURG

- Learn about error-tolerant search
 - it's about typing errors in the query and in the documents
 - a natural word similarity measure: Levenshtein distance
 - definition
 - intuition
 - how to compute it (dynamic programming)
 - given a query word and a large set of words, find the most similar word(s) in the set
 - context-sensitive query correction (Did you mean?)
- Last half hour:
 - open discussion about the exercise sheets
 - how much work they are, how hard, etc.

What is Error-Tolerant Search

We query a search engine and don't get results

- ... or few results
- for example: algoritm
- Reason 1: we misspelled the query (should be: algorithm)
- Reason 2: in the document(s) we are looking for, the words are misspelled [show examples]
- Solution for problem due to Reason 1
 - find words that are "similar" to the (misspelled) query words
- Solution for problem due to Reason 2
 - find words that are "similar" to the (correctly spelled) query

in any case, we need to find "similar" words

Similarity Measures

- Levenshtein distance a.k.a. Edit distance
 - given two strings / words x and y
 - consider the following transformations
 - replace a single character: $alkorithm \rightarrow algorithm$

REI R

- insert a character: algoritm \rightarrow algorithm
- delete a character: all gorithm \rightarrow algorithm
- the Levenshtein or edit distance ED(x, y) is then defined as
 - the minimal number of transformation to get from x to y
 - for example: $x = allgorithm \quad y = aigorytm$
 - then ED(x, y) = 4

more about other measures later

Efficient computation

Terminology

- -x(i) =the prefix of x of length i in particular, x(|x|) = x
- -y(j) = the prefix of y of length j in particular, y(|y|) = y
- $-\epsilon$ denotes the empty word

Recursion

- it seems that we can compute ED(x,y) recursively from the ED of prefixes of x and y, namely
- $ED(x(i), \varepsilon) = i$ and $ED(\varepsilon, y(j)) = j$
- for i and j both > 0, we have ED(x(i), y(j)) = the minimum of
 - ED(x(i), y(j-1)) + 1 ~ vinsert y[j]
 - ED(x(i-1), y(j)) + 1 ~ ~ delete x[i]
 - ED(x(i-1), y(j-1)) + 1 ~ ~ replace x[i] by y[j]
 - ED(x(i-1), y(j-1)) if x[i] = y[j]

- Let's compute ED("bread", "board")
 - assuming that the recursion from the previous slide is correct (which we will prove on one of the next slides)

- Let $|\mathbf{x}| = n$ and $|\mathbf{y}| = m$
 - then the time complexity is $O(n \cdot m)$
 - O(1) time per table entry
 - and this seems hard to improve in the general case
 - the space complexity is $O(n \cdot m)$
 - again O(1) space per table entry
 - but this can be easily improved
 - we can go column by column and only store the last column

- or we can go row by row and only store the last row
- this gives a space complexity of O(min(n, m))

The recursion looks correct

- but it's actually not easy to prove that it's correct
- it is easy to prove that the recursion gives a possible sequence of transformations ...
 - ... and thus an upper bound on the edit distance
- but it's not clear that it gives an optimal sequence of transformations
- I will give you the proof idea
- and a sketch of some parts
- one important part you will do as an exercise

Proof Outline

Lemma 1:

 in an optimal sequence of transformations, if a character is inserted, it is not later deleted again or replaced [next slide]

Lemma 2:

- a sequence of transformations for $x \rightarrow y$ is called monotone if the transformations on x occur at strictly increasing positions (except that the next operation after a delete may be at the same position)
- the recursion computes an optimal monotone sequence of transformations [slide after the next]

Lemma 3:

 for each optimal sequence of transformations, there is a monotone one with the same length [Exercise]]

Proof sketch of Lemma 1:

 if a character gets inserted and later deleted again, we can remove both operations and get a shorter sequence if a character gets inserted and later replaced, we can remove the replace and insert the replaced character right away, and thus get a shorter sequence Proof sketch of Lemma 2:

- proof is by induction on |x| + |y| = n + m
- Case 1: last transformation occurs at position |y|
 - then the previous transformation do one of
 - $x(n) \rightarrow y(m-1)$ if last transformation was delete

REI

- $x(n-1) \rightarrow y(m)$ if last transformation was insert
- $x(n-1) \rightarrow y(m-1)$ if last transformation was replace
- and by way of induction these are optimal
- Case 2: last transformation occurs at position < |y|
 - then x[n] = y[m] and these transformations do

• $x(n-1) \rightarrow y(m-1)$

and by way of induction this is optimal

Given

- a query word q
- a large set of words S
- a threshold $\boldsymbol{\delta}$

Find

– all words in S with edit distance $\leq \delta$ to the query word q

- Naïve algorithm
 - for each word in S compute the edit distance to q
 - one edit distance computation takes around 1 μsec
 - so for 10 million words in S \rightarrow 10 seconds
 - that is inacceptable as response time for a search engine

Filtering with a Permuterm Index

- Given x and y with $ED(x, y) \le \delta$
 - then if x and y are not too short they have at least a certain substring in common
 - actually one can prove that there is a rotation x' of x and a rotation y' of y such that x' and y' have a common prefix of size at least $L = \text{ceil}(\max(|x|, |y|) / \delta) > 1$

[where ceil(...) means rounded upwards]

– it's one of the exercises to prove this!

assume 1×1>14

- here is an intuitive illustration of why this holds true:

$$X \xrightarrow{} \delta = 2$$

Filtering with a Permuterm Index

10lgauthm€) 5=2 [] - 1=4 This suggests the following algorithm

- build a Permuterm index for S
 - that is, compute all possible rotations of all words in S and sort them
- let L be the size of a common prefix from the slide before
- then for each rotation of the query word q
 - let q' be the prefix of size L of q
 - find all matches of q'* in the Permuterm index for S
- for all matches thus found, compute the actual edit distance
- this will find all words s with $ED(q, s) \leq \delta$
- let's see by an example how effective the filtering is ...

UNI FREIBURG

Let's build a k-gram index for S

- that is, for each string of length k have a list of all words in S containing that string as a substring, for example (k=2)
 - bo: aboard, about, boardroom, border, ...
 - or: border, lord, morbid, sordid, ...
 - rd: aboard, ardent, boardroom, border, ...
- take q = bord as an example query string
- then using the lists above, we can easily compute:
 - for each word s in S
 - the number of k-grams q and s have in common
 - for example: bord and boardroom ...
 - ... have exactly two 2-grams in common (bo and rd)

Jaccard distance between two words x and y

- the Jaccard coefficient of two sets A and B is defined as J(A, B) = |A n B| / |A u B|
- for example, for $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$

A n B = $\{2, 3\}$, A u B = $\{1, 2, 3, 4\} \rightarrow J(A, B) = 1/2$

- given two words x and y
 - let A be the set of k-grams of x
 - let B be the set of k-grams of y
 - then the k-gram Jaccard distance J(x, y) = J(A, B)
- for example, for x = bord and y = boardroom
 - A = {bo, or, rd}, |A n B| = 2 (last slide)
 - $|A u B| = 3 + 8 2 = 9 \rightarrow J(x, y) = 2 / 9 \approx 0.22$

Filtering with a K-Gram Index

So scanning the inverted lists of the k-gram index ...

- ... quickly gives us all words with Jaccard distance below a given threshold
- unfortunately, the Jaccard distance between two words does not always correspond well with their "intuitive" similarity

Example 1: J("weigh", "weihg") = 2 / 6 = 1/3 (too low)

Example 2: J(``aster'', ``terase'') = 3 / 6 = 1/2 (too high)

- the k-gram index can also be used to filter out words with too large edit distance
 - if the edit distance between x and y is $\leq \delta$
 - then x' and y' must have at least

 $max(|x'|, |y'|) - 1 - (\delta - 1) \cdot k$ k-grams in common

where x' and y' are x and y with k-1 # padded left and right

- The "Did you mean ...?" you know from Google & Co
 - the simplest way to realize this is as follows
 - for each query word, find the most similar words as before example query: infomatik fribourg infomatik: informatik, information, informatics
 - fribourg: freiburg, freiburger, friedburg
 - now try out all combinations and suggest the "best" one to the user, where "best" can mean:
 - retrieves the largest number of hits
 - is most frequent in the query log
 - a combination of the two
 - trying out all combinations is too expensive in practice
 - simple trick: precompute statistics about co-occurrence of words

UNI FREIBURG