Search Engines
WS 2009 / 2010

Lecture 8, Thursday December 10th, 2009
(Error-Tolerant Search)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Goal of Today’s Lecture

m Learn about error-tolerant search

— it's about typing errors in the query and in the documents
— a natural word similarity measure: Levenshtein distance

- definition

» Intuition

» how to compute it (dynamic programming)

— given a query word and a large set of words, find the most
similar word(s) in the set

— context-sensitive query correction (Did you mean?)
m Last half hour:

— open discussion about the exercise sheets
— how much work they are, how hard, etc.

What is Error-Tolerant Search

m We query a search engine and don't get results

— ... or few results
— for example: algoritm
— Reason 1: we misspelled the query (should be: algorithm)

— Reason 2: in the document(s) we are looking for, the
words are misspelled [show examples]

m Solution for problem due to Reason 1
— find words that are “similar” to the (misspelled) query words
m Solution for problem due to Reason 2

— find words that are “similar” to the (correctly spelled) query

INn any case, we need to find “similar” words

Similarity Measures

m Levenshtein distance a.k.a. Edit distance

— given two strings / words x and y
— consider the following transformations
» replace a single character: alkorithm — algorithm

insert a character: algoritm — algorithm

» delete a character: allgorithm — algorithm

— the | avenchtain nr editr dictance FD(v v) ic than defined ac
CIING L\ VLT TN IUNILT VI AU UUTOUWULT TN\ I—IJ\I\ l IV U AT] w\d UUD

» the minimal number of transformation to get fr

O
=
>
—+
O
<

o for example: x = allgorithm vy = aigorytm
o then ED(x, y) = 4

more about other measures later

Efficient computation

m Terminology
— X(i) = the prefix of x of length i in particular, x(|x|) = x
— y(j) = the prefix of y of length j in particular, y(|ly|) = vy
— € denotes the empty word

m Recursion

— it seems that we can compute ED(x,y) recursively from the ED
of prefixes of x and y, namely

— ED(x(i), €) =i and EDC(g, y(3)) =]

— for i and j both > 0, we have ED(x(i), y(j)) = the minimum of
ED(x(i), y(j-1)) + 1 ~ insert y[j]

ED(x(i-1), y(3)) + 1 ~ delete x[i]

» ED(x(i-1), y(3-1)) + 1 ~ replace x[i] by y[j]

» ED(x(i-1), y(j-1)) if x[i] = y[]

An Example

m Let’'s compute ED("bread”, “board”)

— assuming that the recursion from the previous slide is correct

(which we will prove on one of the next slides)

E B o AR D

> Ot 2 24 &
B 1 Qe 23 Y
R 21%\125
E 2 2 293 3
A q B 3N

@5%433T§>i

Time and Space Complexity

mlet x| =nand |y|] =m
— then the time complexity is O(n - m)
O(1) time per table entry
» and this seems hard to improve in the general case
— the space complexity is O(n - m)
» again O(1) space per table entry
» but this can be easily improved
» we can go column by column and only store the last column
or we can go row by row and only store the last row

» this gives a space complexity of O(min(n, m))

Correctness Proof

m The recursion looks correct

— but it's actually not easy to prove that it's correct

— it is easy to prove that the recursion gives a possible
sequence of transformations ...

... and thus an upper bound on the edit distance

— but it's not clear that it gives an optimal sequence of
transformations

— I will give you the proof idea
— and a sketch of some parts

— one important part you will do as an exercise

Proof Outline

m Lemma 1:

— in an optimal sequence of transformations, if a character is
inserted, it is not later deleted again or replaced [next slide]

m Lemma 2:

— a sequence of transformations for x — vy is called monotone if
the transformations on x occur at strictly increasing positions
(except that the next operation after a delete may be at the
same position)

— the recursion computes an optimal monotone sequence of
transformations [slide after the next]

m Lemma 3:

— for each optimal sequence of transformations, there is a
monotone one with the same length [Exercise!]

Proof Sketch of Lemma 1

m Proof sketch of Lemma 1:

— if @ character gets inserted and later deleted again, we can
remove both operations and get a shorter sequence

— if a character gets inserted and later replaced, we can
remove the replace and insert the replaced character right
away, and thus get a shorter sequence

Proof Sketch of Lemma 2

m Proof sketch of Lemma 2:
— proof is by inductionon |x| + |[y| =n+ m
— Case 1: last transformation occurs at position |y|
» then the previous transformation do one of
x(n) = y(m-1) if last transformation was delete
x(n-1) = y(m) if last transformation was insert
x(n-1) = y(m-1) if last transformation was replace
» and by way of induction these are optimal
— Case 2: last transformation occurs at position < |y|
» then x[n] = ytm] and these transformations do
x(n-1) = y(m-1)
and by way of induction this is optimal

Finding Similar Words in a Large Set

m Given
— a query word g
— a large set of words S
— a threshold 0

m Find

— all words in S with edit distance < 0 to the query word g

= Naive algorithm
— for each word in S compute the edit distance to g
— one edit distance computation takes around 1 psec
— s0 for 10 million words in S — 10 seconds
— that is inacceptable as response time for a search engine

Filtering with a Permuterm Index

m Given x and y with ED(x, y) < 0

— then if x and y are not too short they have at least a
certain substring in common

— actually one can prove that there is a rotation x’ of x and
a rotation y’ of y such that x’ and y' have a common

prefix of size at least L = cail{max(|x,, vi) / <

[where ceil(...) means rounded upwards]
— it's one of the exercises to prove this!

— here is an intuitive illustration of why this holds true:

N — o S=7

9,

W

Filtering with a Permuterm Index

m This suggests the following algorithm / Q&jmﬂ@uw\[55
— build a Permuterm index for S S=0 A=Y

that is, compute all possible rotations of all words in S
and sort them

— let L be the size of a common prefix from the slide before
— then for each rotation of the query word g
let g’ be the prefix of size L of g
» find all matches of g™ in the Permuterm index for S
— for all matches thus found, compute the actual edit distance
— this will find all words s with ED(q, s) < 0

— let’s see by an example how effective the filtering is ...

Filtering with a K-Gram Index

m Let’s build a k-gram index for S

— that is, for each string of length k have a list of all words in
S containing that string as a substring, for example (k=2)

bo: aboard, about, boardroom, border, ...
or: border, lord, morbid, sordid, ...
rd: aboard, ardent, boardroom, border, ...
— take g = bord as an example query string
— then using the lists above, we can easily compute:
» foreachword sin S
» the number of k-grams g and s have in common
» for example: bord and boardroom ...
... have exactly two 2-grams in common (bo and rd)

Filtering with a K-Gram Index

m Jaccard distance between two words x and y

— the Jaccard coefficient of two sets A and B is defined as
JA,B)=|AnB|/|AuB|
— for example, for A = {1, 2, 3} and B = {2, 3, 4}
AnB=4{2,3} AuB={1,2,3,4 - JA B)=1/2
— given two words x and y
» let A be the set of k-grams of x
» let B be the set of k-grams of y
» then the k-gram Jaccard distance J(x, y) = J(A, B)
— for example, for x = bord and y = boardroom
» A=4{bo, or, rd}, |AnB| =2 (last slide)
e |[AuB|=3+8-2=9 - I vy)=2/9%0.22

Filtering with a K-Gram Index

m So scanning the inverted lists of the k-gram index ...

— ... quickly gives us all words with Jaccard distance below
a given threshold

— unfortunately, the Jaccard distance between two words does
not always correspond well with their “intuitive” similarity

Example 1: J("weigh”, "weihg”) =2 /6 = 1/3 (too low)
Example 2: J(“aster”, “terase”) =3 /6 = 1/2 (too high)

— the k-gram index can also be used to filter out words with too
large edit distance

if the edit distance between xandyis <0
» then x” and y’ must have at least
max(|x'|,|y’|) - 1 - (0-1)-k k-grams in common

where x" and y’ are x and y with k-1 # padded left and right

Context-Sensitive Query Correction

m The "Did you mean ...?" you know from Google & Co
— the simplest way to realize this is as follows
— for each query word, find the most similar words as before
example query: infomatik fribourg
infomatik: informatik, information, informatics
fribourg: freiburg, freiburger, friedburg

— now try out all combinations and suggest the “best” one to the
user, where “best” can mean:

» retrieves the largest number of hits
» is most frequent in the query log
» a combination of the two
— trying out all combinations is too expensive in practice
— simple trick: precompute statistics about co-occurrence of words

