Chair for Algorithms and Data Structures
Prof. Dr. Hannah Bast Marjan Celikik

Search Engines WS 09/10

http://ad.informatik.uni-freiburg.de/teaching

Exercise Sheet 10 - Solutions

Exercise 1 (Hannah)

For $A=\left(\begin{array}{lll}3 & 5 & 5 \\ 3 & 7 & 1\end{array}\right)$, we have $A \cdot A^{T}=\left(\begin{array}{cc}59 & 49 \\ 49 & 59\end{array}\right)$ and $A^{T} \cdot A=\left(\begin{array}{ccc}18 & 36 & 18 \\ 36 & 74 & 32 \\ 18 & 32 & 26\end{array}\right)$.
For the eigenvalues of $A \cdot A^{T}$, we have to compute the zeroes of $(59-\lambda)^{2}-49^{2}=\lambda^{2}-118 \cdot \lambda+1080=$ $(\lambda-108) \cdot(\lambda-10)$, hence 108 and 10 . The corresponding eigenvectors are easily seen to be $(1,1)^{T}$ and $(1,-1)^{T}$.
Without having to compute them, we know that the eigenvalues of $A^{T} \cdot A$ are 108,10 , and 0 . We only need the eigenvectors for 108 and 10 , and solving the two corresponding 3×3 systems of equations, we get $(1,2,1)^{T}$ and $(0,1,-2)^{T}$, respectively.
Normalizing all these eigenvectors, we get the singular value decomposition

$$
\left(\begin{array}{ccc}
3 & 5 & 5 \\
3 & 7 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 / \sqrt{2} & 1 \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right) \cdot\left(\begin{array}{cc}
\sqrt{108} & 0 \\
0 & \sqrt{10}
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 / \sqrt{6} & 2 / \sqrt{6} & 1 / \sqrt{6} \\
0 & 1 / \sqrt{5} & -2 / \sqrt{5}
\end{array}\right) .
$$

Exercise 2 (Hannah)

We prove the statement in five steps. In the following $\|\cdot\|$ always denotes the Frobenius norm for a matrix and the L_{2} norm for a vector (in both cases: square root of the sum of the squares of all entries). Note that for a vector x with entries $x_{1}, \ldots, x_{n},\|x\|^{2}=\sum_{i=1}^{n} x_{i}^{2}=x^{T} \cdot x$. Also note that the norm of a matrix and of its transpose are equal.
(1) Let U be an $m \times m$ column-orthogonal matrix, that is, $U^{T} \cdot U=I$. Let x be an $m \times 1$ vector. Then $\|U \cdot x\|^{2}=(U \cdot x)^{T} \cdot(U \cdot x)=x^{T} \cdot U^{T} \cdot U \cdot x=x^{T} \cdot x=\|x\|^{2}$.
(2) Let again U be an $m \times m$ column-orthogonal matrix, and let A be an $m \times n$ matrix. Let a_{1}, \ldots, a_{n} the the $n m \times 1$ columns of A. Then, using (1), we have $\|U \cdot A\|^{2}=\left\|U \cdot\left(a_{1} \ldots a_{n}\right)\right\|^{2}=$ $\left\|\left(U \cdot a_{1} \ldots U \cdot a_{n}\right)\right\|^{2}=\left\|U \cdot a_{1}\right\|^{2}+\cdots+\left\|U \cdot a_{n}\right\|^{2}=\left\|a_{1}\right\|^{2}+\cdots+\left\|a_{n}\right\|^{2}=\left\|\left(a_{1} \ldots a_{n}\right)\right\|^{2}=\|A\|^{2}$.
(3) Let A be an $m \times n$ matrix with singular value decomposition $U \cdot S \cdot V^{T}$. Then, using (2) two times, we have $\|A\|^{2}=\left\|U \cdot S \cdot V^{T}\right\|^{2}=\left\|S \cdot V^{T}\right\|^{2}=\left\|\left(S \cdot V^{T}\right)^{T}\right\|^{2}=\|V \cdot S\|^{2}=\|S\|^{2}$.
(4) Let $A=U \cdot S \cdot V^{T}$ as above. Let u_{1}, \ldots, u_{m} the the $m m \times 1$ column vectors of U, let s_{1}, \ldots, s_{m} the the s singular values in decreasing order, and let v_{1}, \ldots, v_{n} be the $n n \times 1$ column vectors of V. Then it is easy to see that $A=\sum_{i=1}^{m} u_{i} \cdot s_{i} \cdot v_{i}^{T}$.
(5) Let $A=U \cdot S \cdot V^{T}$ as before. Then by (4), we have $A=\sum_{i=1}^{m} u_{i} \cdot s_{i} \cdot v_{i}^{T}$ and $A_{k}=\sum_{i=1}^{k} u_{i} \cdot s_{i} \cdot v_{i}^{T}$,
and hence $A-A_{k}=\sum_{i=k+1}^{m} u_{i} \cdot s_{i} \cdot v_{i}^{T}$. Hence the singular value decomposition of $A-A_{k}$ has s_{k+1}, \ldots, s_{m} as its singular values, and hence, by (3), we have $\left\|A-A_{k}\right\|^{2}=s_{k+1}^{2}+\cdots+s_{m}^{2}$.

Exercise 3 (Hannah)

Let $x=\alpha_{1} \cdot u_{1}+\cdots+\alpha_{n} \cdot u_{n}$. By assumption, we have that $\alpha_{1}=x \cdot u_{1}^{T} \neq 0$. Since u_{i} is an eigenvector of A with eigenvalue λ_{i}, we have that $A^{k} \cdot u_{i}=\lambda^{k} \cdot u_{i}$, and hence $A^{k} \cdot x=\alpha_{1} \cdot \lambda_{1}^{k} \cdot u_{1}+\cdots \alpha_{n} \cdot \lambda_{n}^{k} \cdot u_{n}=$ $\alpha_{1} \cdot \lambda_{1}^{k} \cdot\left(u_{1}+\left(\alpha_{2} / \alpha_{1}\right) \cdot\left(\lambda_{2} / \lambda_{1}\right)^{k} \cdot u_{2}+\cdots+\left(\alpha_{n} / \alpha_{1}\right) \cdot\left(\lambda_{n} / \lambda_{1}\right)^{k} \cdot u_{n}\right)$. Since by assumption, the eigenvalues of A are all positive and different and λ_{1} is the largest, $\lambda_{2} / \lambda_{1}, \ldots, \lambda_{n} / \lambda_{1}$ are all <1. Hence $\lim _{k \rightarrow \infty} A^{k} \cdot x /\left(\alpha_{1} \cdot \lambda_{1}^{k}\right)=u_{1}$, and hence $\lim _{k \rightarrow \infty} A^{k} \cdot x /\left\|A^{k} \cdot x\right\|=u_{1}$ (it can only converge to a multiple of u_{1}, and since $A^{k} \cdot x /\left\|A^{k} \cdot x\right\|$ has norm 1 for all k, it can only be u_{1} itself). As an aside, this also proves that, asymptotically, the norm of $A^{k} \cdot x$ grows as $\alpha_{1} \cdot \lambda_{1}^{k}$.

Exercise 4 (Hannah)

Here is a straightforward implementation in $\mathrm{C}++$.

```
#include <vector>
#include <math.h>
int main(int argc, char** argv)
{
    int m = 2;
    std::vector<vector<double> > A;
    A.resize(m + 1);
    for (int i = 1; i <= m; ++i) A[i].resize(m + 1);
    A[1][1] = 2;
    A[2][1] = 1;
    A[1][2] = 1;
    A[2][2] = 2;
    int num_iterations = argc > 1 ? atoi(argv[1]) : 100;
    printf("#iterations = %d\n", num_iterations);
    std::vector<double> x;
    x.resize(m + 1);
    x[1] = 1; x[2] = 2;
    for (int iteration = 1; iteration <= num_iterations; ++iteration)
    {
        std::vector<double> xx(m + 1);
        for (int i = 1; i <= m; ++i)
            for (int j = 1; j <= m; ++j) xx[i] += A[i][j] * x[j];
        double norm = 0;
        for (int i = 1; i <= m; ++i) norm += xx[i] * xx[i];
        norm = sqrt(norm);
        for (int i = 1; i <= m; ++i) x[i] = xx[i] / norm;
    }
    for (int i = 1; i <= m; ++i) printf("%10.5f\n", x[i]);
}
```

