Chair for Algorithms and Data Structures
Prof. Dr. Hannah Bast Marjan Celikik

Search Engines WS 09/10

http://ad.informatik.uni-freiburg.de/teaching

——der

Exercise Sheet 11 - Solutions

Exercise 1 (Marjan)
TODO.
Exercise 2 (Marjan)
TODO.
Exercise 3 (Marjan)
TODO.
Exercise 4 (Hannah)
Since the events are independent, we have $L=\prod_{i=1}^{k} p_{i}^{n_{i}}$. Instead of L, we will minimize $\ln L=$ $\sum_{i=1}^{k}\left(n_{i} \cdot \ln p_{i}\right)$, which gives the same result (because \ln is a strictly monotone function) but is easier to deal with from the point of view of computing derivatives.
Now we want to find those p_{1}, \ldots, p_{k} with sum 1 such that $\ln L$ is maximized. To compute the local optimae, we use Lagrangian optimization, as presented in the lecture, and we write:

$$
\hat{L}=\sum i=1^{k}\left(n_{i} \cdot \ln p_{i}\right)+\lambda \cdot\left(1-\sum_{i=1}^{k} p_{i}\right) .
$$

Now set the partial derivatives with respect to each of $\lambda, p_{1}, \ldots, p_{k}$ to zero. Derivation by λ gives us the side constraint again, as usual:

$$
\frac{\delta \hat{L}}{\delta \lambda}=1-\sum_{i=}^{k} p_{i}=0 .
$$

Derivation by p_{i} gives us

$$
\frac{\delta \hat{L}}{\delta n_{i}}=n_{i} / p_{i}-\lambda=0
$$

Hence all n_{i} / p_{i} are equal, which means $p_{i}=C \cdot n_{i}$ for some constant C, and since the p_{i} have to sum to 1 , we have $C=1 / n$, and hence $p_{i}=n_{i} / n$.

It remains to show that we have a local maximum at $p_{i}=n_{i} / n$, for $i=1, \ldots, k$. The value of \hat{L} at this location is $\sum_{i=1}^{k}\left(n_{i} \cdot \ln \left(n_{i} / n\right)\right)>0$. On the border we have $p_{i}=1$ for one i, and all other $p_{j}=0$. The value of \hat{L} is then $\ln 0=-\infty$, and therefore our local optimum, which has a positive value, must be a local maximum.

