Chair for Algorithms and Data Structures Prof. Dr. Hannah Bast Marjan Celikik

Search Engines WS 09/10

http://ad.informatik.uni-freiburg.de/teaching

IBURG

Exercise Sheet 11 — Solutions

Exercise 1 (Marjan) TODO.

Exercise 2 (Marjan) TODO.

Exercise 3 (Marjan)

TODO.

Exercise 4 (Hannah)

Since the events are independent, we have $L = \prod_{i=1}^{k} p_i^{n_i}$. Instead of L, we will minimize $\ln L = \sum_{i=1}^{k} (n_i \cdot \ln p_i)$, which gives the same result (because \ln is a strictly monotone function) but is easier to deal with from the point of view of computing derivatives.

Now we want to find those p_1, \ldots, p_k with sum 1 such that $\ln L$ is maximized. To compute the local optimae, we use Lagrangian optimization, as presented in the lecture, and we write:

$$\hat{L} = \sum_{i=1}^{k} i = 1^{k} (n_{i} \cdot \ln p_{i}) + \lambda \cdot (1 - \sum_{i=1}^{k} p_{i}).$$

Now set the partial derivatives with respect to each of λ , p_1, \ldots, p_k to zero. Derivation by λ gives us the side constraint again, as usual:

$$\frac{\delta \hat{L}}{\delta \lambda} = 1 - \sum_{i=1}^{k} p_i = 0.$$

Derivation by p_i gives us

$$\frac{\delta \hat{L}}{\delta n_i} = n_i / p_i - \lambda = 0.$$

Hence all n_i/p_i are equal, which means $p_i = C \cdot n_i$ for some constant C, and since the p_i have to sum to 1, we have C = 1/n, and hence $p_i = n_i/n$.

It remains to show that we have a local maximum at $p_i = n_i/n$, for i = 1, ..., k. The value of \hat{L} at this location is $\sum_{i=1}^{k} (n_i \cdot \ln(n_i/n)) > 0$. On the border we have $p_i = 1$ for one *i*, and all other $p_j = 0$. The value of \hat{L} is then $\ln 0 = -\infty$, and therefore our local optimum, which has a positive value, must be a local maximum.