
Chair for Algorithms

and Data Structures

Prof. Dr. Hannah Bast

Florian Bäurle

Information Retrieval
WS 2012/2013

http://ad-wiki.informatik.uni-freiburg.de/teaching

Exam
Friday, March 1, 2013, 14:10 - 15:50, Kinohörsaal in Building 082

General instructions:

There are six tasks, of which you can select five tasks of your choice. Each task is worth 20 points.
If you do all six tasks, we will only count the best five, that is, you can reach a maximum number
of 100 points.

You need 50 points to pass the exam. The exact correspondence between the number of points
and the grade will be decided when we correct your exams.

You have 100 minutes of time overall. If you do only five tasks that is 20 minutes per task on
average.

You are allowed to use any amount of paper, books, etc. You are not allowed to use any computing
devices or mobile phones, in particular nothing with which you can communicate with others or
connect to the Internet.

Please write your solutions on this hand-out! If you need additional pages, please write your
Matrikelnummer and your name IN PRINTED LETTERS on each of them.

Good luck!

http://ad-wiki.informatik.uni-freiburg.de/teaching

Task 1 (Inverted index + encoding, 20 points)

Consider the following non-sense document collection:

Document 1: bla bla

Document 2: bla bli bla

Document 3: blu blu

Document 4: bla blu bla

Document 5: bli blu blu

1.1 (10 points) Write down the inverted lists for this document collection in gap-encoded form.

The first gap in each inverted list is just the gap from 0 to the first document id in that list. For

the example, an inverted list 1, 4 would be gap-encoded as +1,+3. Scores are simply tf = term

frequency. Each entry in an inverted list should thus be of the form (gap, score).

1.2 (10 points) Design two prefix-free entropy-optimal codes, one for the gaps and one for the

scores. You only need codes for those gaps / scores that actually occur (hint : if you did task

1.1 correctly, there are just three different gaps and two different scores). Then write down the

inverted lists in encoded form (for each inverted list entry, simply concatenate the code for the

gap and for the score).

Task 2 (List intersection, 20 points)

Assume inverted lists are represented as bit arrays, where the ith bit is 1 if and only if i is in the

list. For example, for a collection with 5 documents, the list 1, 2, 4 would be represented as 11010.

Scores are ignored in this task.

2.1 (10 points) Write the code for a function that intersects two inverted lists given as bit arrays

and outputs the result again as a bit arrays. You can write the code in Java or in C++. Syntax

details are not important. You can assume that you have a bit array data type with random

access to each element.

2.2 (10 points) For comparison, consider the gap-encoded representation again, and assume that

the probability distribution for the value X of a fixed gap is Pr(X = i) = 2−i. What then is

the expected length of an entropy-optimally encoded list with m elements (and hence m gaps)?

When is this encoding more efficient than the bit array representation from task 2.1. You can use

without proof that
∑∞

i=1 i/2i = 2.

Task 3 (Error-tolerant search, 20 points)

Consider the following three words:

bla

bli

blu

3.1 (10 points) Write down the 2-gram index for these words (pad each word with one # on

the left and on the right). For given words x and y with ED(x, y) ≤ 1, state how many 2-grams

x′ and y′ will certainly have in common (where x′ and y′ are the padded versions of x and y,

respectively).

3.2 (10 points) Use the 2-gram index and the lower bound from task 3.1 to determine which of

the three words above have an edit distance ≤ 1 from the query word blaa. Use as few actual

edit distance operations as possible. Explain each of your steps, and don’t just write down the

final result.

Task 4 (Latent semantic indexing, 20 points)

Consider the following 3× 5 term-document matrix A and query Q:

D1 D2 D3 D4 D5 Q

1 1 0 1 0.5 1

1 0 1 2 1 1

0 0 1 1 0.5 0

4.1 (10 points) Argue that the matrix A has rank 3. Then change a single entry such that the

rank of the resulting matrix A′ becomes 2. Prove this by writing A′ as a product of a 3×2 matrix

with a 2× 5 matrix.

4.2 (10 points) Compute the cosine similarity between the query Q above and each of the five

documents from A′. Then rank the documents according to these similarity scores. If two docu-

ments have the same similarity to the query, rank that one with the smaller index first (e.g. D1

before D2). Note that you do not have to compute the exact numerical values of the scores (there

are square roots involved) to determine the ranking.

Task 5 (k-means, 20 points)

Assume the elements to be clustered are real numbers, and the distance between two elements x

and y is just the absolute of their difference |x − y|. The average of a set of elements is just the

average of the respective numbers.

5.1 (10 points) Perform 2-means clustering on the 10-element set S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
Take 1 and 2 as the initial cluster centroids. In the (re-)assignment step of 2-means, when an

element has the same distance from both centroids, assign it to the centroid from the smaller

cluster (= the number of elements from which the centroid was computed is smaller).

5.2 (10 points) Prove that for any choice of two different elements from S as initial cluster

centroids, 2-means will converge to the same clustering (namely, the one from task 5.1 above).

Task 6 (Naive Bayes, 20 points)

Consider the following string objects, each with one of two class labels (X and Y):

xy Y

xxxy Y

xyy X

xxxyy X

xxxxxyy X

xxxxxxxyy X

6.1 (10 points) Do the learning step of Naive Bayes on these objects, considering each object

as a 2-dimensional feature vector (nx, ny), where nx is the number of occurrences of the letter x

and ny is the number of occurrences of the letter y. Then classify the first two objects from the

training set (xy and xxxy) using the learned classifier.

6.2 (10 points) Prove that the Naive Bayes classifier from task 6.1 will classify any object as X.

Draw the six objects in a 2D-coordinate system (nx on the x-axis, ny on the y-axis). Also draw

(in a different color) the seperating line + margin for an SVM trained on these objects without

allowing outliers. You can tell this from the geometry of the points alone, no need to do any

calculations.

