527
Comment:
|
2074
|
Deletions are marked like this. | Additions are marked like this. |
Line 3: | Line 3: |
Click "Edit (Text)" in the upper bar of this page and add your row to the table below, following the examples already there. Please write down all values with '''exactly two digits of precision'''. In the first column, write your account name, or name1+name2 if you work in a group. ||'''Name''' ||'''MP@3''' ||'''MP@R''' ||'''MAP''' ||'''BM25 Parameters''' ||'''Refinements''' || ||ck1028 ||0.60 ||0.45 ||0.45 ||b=0.1, k=0.75 ||None (baseline) || |
Click "Edit (Text)" in the upper bar of this page and add your row to the table below, following the examples already there. In the first column, write your account name, or name1+name2 if you work in a group. <<BR>> In the columns 2-4, write down the values of ''MP@3'', ''MP@R'' and ''MAP'' returned by your ''process_query()'' method from ES2. <<BR>> In the columns 5-7, write down the values of your ''best'' result returned by your ''process_query_vsm()'' method from ES8. <<BR>> In the 8th column, give a concise description of the score type and the normalization you have used to achieve the best result in ''process_query_vsm()''. <<BR>> Please write down all values with '''exactly two digits of precision'''. <<BR>> ||<tablewidth=""" tableheight=""" tablestyle="100%";auto""style=""text-align:center"" |2>'''Name''' ||||||<style="text-align:center">''process_query()'' from ES2 ||||||<style="text-align:center">''process_query_vsm()'' from ES8 ||<style="text-align:center" |2>'''Used combination in ''process_query_vsm()''''' || ||'''MP@3''' ||'''MP@R''' ||<style="text-align:center">'''MAP''' ||<style="text-align:center">'''MP@3''' ||<style="text-align:center">'''MP@R''' ||<style="text-align:center">'''MAP''' || ||ck1028 ||0.60 ||0.45 ||0.45 ||0.60 ||0.45 ||0.45 ||BM25 scores, without L2-norm. || ||pg152 ||0.63 ||0.45 ||0.46 ||0.63 ||0.45 ||0.46 ||BM25 scores || ||ak721-bf87 ||0.47 ||0.31 ||0.27 ||0.47 ||0.31 ||0.28 ||BM25 scores || ||lb319+hs211 ||0.60 ||0.45 ||0.45 ||0.60 ||0.45 ||0.45 ||BM25 scores, best without any norm. || ||dd74 ||0.60 ||0.45 ||0.45 ||0.60 ||0.45 ||0.45 ||BM25 scores, without any norm. || ||fj47 ||0.47 ||0.31 ||0.27 ||0.47 ||0.31 ||0.27 ||BM25 scores without any norm || ||cs568 ||0.47 ||0.31 ||0.27 ||0.47 ||0.31 ||0.27 ||also BM25 scores without any norm || ||mb930+ng153||0.60||0.43||0.44||0.60||0.43||0.44||BM25 scores without any norm|| ||fb234 ||0.47 ||0.31 ||0.27 ||0.47 ||0.31 ||0.27 ||BM25 scores || |
Results for Exercise Sheet 8 (Vector Space Model)
Click "Edit (Text)" in the upper bar of this page and add your row to the table below, following the examples already there.
In the first column, write your account name, or name1+name2 if you work in a group.
In the columns 2-4, write down the values of MP@3, MP@R and MAP returned by your process_query() method from ES2.
In the columns 5-7, write down the values of your best result returned by your process_query_vsm() method from ES8.
In the 8th column, give a concise description of the score type and the normalization you have used to achieve the best result in process_query_vsm().
Please write down all values with exactly two digits of precision.
Name |
process_query() from ES2 |
process_query_vsm() from ES8 |
Used combination in process_query_vsm() |
||||
MP@3 |
MP@R |
MAP |
MP@3 |
MP@R |
MAP |
||
ck1028 |
0.60 |
0.45 |
0.45 |
0.60 |
0.45 |
0.45 |
BM25 scores, without L2-norm. |
pg152 |
0.63 |
0.45 |
0.46 |
0.63 |
0.45 |
0.46 |
BM25 scores |
ak721-bf87 |
0.47 |
0.31 |
0.27 |
0.47 |
0.31 |
0.28 |
BM25 scores |
lb319+hs211 |
0.60 |
0.45 |
0.45 |
0.60 |
0.45 |
0.45 |
BM25 scores, best without any norm. |
dd74 |
0.60 |
0.45 |
0.45 |
0.60 |
0.45 |
0.45 |
BM25 scores, without any norm. |
fj47 |
0.47 |
0.31 |
0.27 |
0.47 |
0.31 |
0.27 |
BM25 scores without any norm |
cs568 |
0.47 |
0.31 |
0.27 |
0.47 |
0.31 |
0.27 |
also BM25 scores without any norm |
mb930+ng153 |
0.60 |
0.43 |
0.44 |
0.60 |
0.43 |
0.44 |
BM25 scores without any norm |
fb234 |
0.47 |
0.31 |
0.27 |
0.47 |
0.31 |
0.27 |
BM25 scores |