18376
Comment:
|
18766
|
Deletions are marked like this. | Additions are marked like this. |
Line 7: | Line 7: |
<p style="color:darkred">This course will be conducted with the materials from the WS 19/20 and live Q&A sessions every Tuesday. There will be tutors for this course as usual. Please read on for all further information.</p> | <a style="color:darkred; font-weight: bold" href="http://ad-wiki.informatik.uni-freiburg.de/teaching/InformationRetrievalWS2122/Evaluation">Results of the official evaluation of this course</a> }}} {{{ #!html <!-- <p style="color:darkred">This course will be conducted with the materials from the WS 19/20 and live Q&A sessions every Tuesday. There will be tutors for this course as usual. Please read on for all further information.</p> --> |
Line 45: | Line 51: |
* Lecture 10, Tuesday, January 7th, 2020 (Classification, Naive Bayes): [[https://www.youtube.com/watch?v=ga5f-ot7v5U|Video Recording]] ([[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/lecture-10.mp4|MP4 Download]]), [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/public/slides/lecture-10.pdf|Slides]], [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/public/code/lecture-10/|Code Template for ES 10]], [[InformationRetrievalWS2122/ResultsES10|Table for your F-measures]], Datasets for ES10: [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-genres-train.tsv|Film Genres (train, Variant 1)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-genres-test.tsv|Film Genres (test, Variant 1)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-genres-train.1000.tsv|Film Genres (train, Variant 2)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-genres-test.1000.tsv|Film Genres (test, Variant 2)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-ratings-train.tsv|Film Ratings (train, Variant 1)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-ratings-test.tsv|Film Ratings (test, Variant 1)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-ratings-train.3000.tsv|Film Ratings (train, Variant 2)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-ratings-test.3000.tsv|Film Ratings (test, Variant 2)]]. | * Lecture 10, Tuesday, January 7th, 2020 (Classification, Naive Bayes): [[https://www.youtube.com/watch?v=ga5f-ot7v5U|Video Recording]] ([[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/lecture-10.mp4|MP4 Download]]), [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/public/slides/lecture-10.pdf|Slides]], [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/public/exercises/sheet-10.pdf|Exercise Sheet 10]], [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/public/code/lecture-10/|Code Template for ES 10]], [[InformationRetrievalWS2122/ResultsES10|Table for your F-measures]], Datasets for ES10: [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-genres-train.tsv|Film Genres (train, Variant 1)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-genres-test.tsv|Film Genres (test, Variant 1)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-genres-train.1000.tsv|Film Genres (train, Variant 2)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-genres-test.1000.tsv|Film Genres (test, Variant 2)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-ratings-train.tsv|Film Ratings (train, Variant 1)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-ratings-test.tsv|Film Ratings (test, Variant 1)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-ratings-train.3000.tsv|Film Ratings (train, Variant 2)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-ratings-test.3000.tsv|Film Ratings (test, Variant 2)]], [[https://daphne.informatik.uni-freiburg.de/ws2122/InformationRetrieval/svn/solutions/sheet-10/|Solution]]. * Lecture 11, Tuesday, January 14th, 2020 (Linear Classifiers, Perceptrons, Logistic Regression): [[https://www.youtube.com/watch?v=_X2LS0ZVBz4|Video Recording]] ([[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/lecture-11.mp4|MP4 Download]]), [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/public/slides/lecture-11.pdf|Slides]], [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/public/exercises/sheet-11.pdf|Exercise Sheet 11]], [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/public/code/lecture-11/|Code Template for ES 11]], [[InformationRetrievalWS2122/ResultsES11|Table for your results]], Datasets for ES11 (same as for ES 10): [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-genres-train.tsv|Film Genres (train, Variant 1)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-genres-test.tsv|Film Genres (test, Variant 1)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-genres-train.1000.tsv|Film Genres (train, Variant 2)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-genres-test.1000.tsv|Film Genres (test, Variant 2)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-ratings-train.tsv|Film Ratings (train, Variant 1)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-ratings-test.tsv|Film Ratings (test, Variant 1)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-ratings-train.3000.tsv|Film Ratings (train, Variant 2)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-ratings-test.3000.tsv|Film Ratings (test, Variant 2)]], [[https://daphne.informatik.uni-freiburg.de/ws2122/InformationRetrieval/svn/solutions/sheet-11/|Solution]]. * Lecture 12, Tuesday, January 21, 2020 (Knowledge Bases, SPARQL, Translation to SQL): [[https://www.youtube.com/watch?v=6VbfV98dlNc|Video Recording]] ([[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/lecture-12.mp4|MP4 Download]]), [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/public/slides/lecture-12.pdf|Slides]], [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/public/exercises/sheet-12.pdf|Exercise Sheet 12]], [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/public/code/lecture-12/|Code Template for ES12]], Datasets for ES12: [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/wikidata.zip|wikidata.zip (31M triples from Wikidata)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/wikidata.5M.zip|wikidata.5M.zip (Subset of wikidata.tsv with only 5M triples)]], [[InformationRetrievalWS2122/ResultsES12|Table for your results]]. * Lecture 13, Tuesday, February 1, 2022 (Course Evaluation, Exam, Work at our Chair): This will be a live lecture, via the usual ZOOM link, please do come! |
Line 51: | Line 63: |
[[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/public/exercises/sheet-10.pdf|Exercise Sheet 10]], [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/solutions/sheet-10/|Solution]]. * Lecture 11, Tuesday, January 14th, 2020 (Linear Classifiers, Perceptrons, Logistic Regression): [[https://www.youtube.com/watch?v=_X2LS0ZVBz4|Video Recording]] ([[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/lecture-11.mp4|MP4 Download]]), [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/public/slides/lecture-11.pdf|Slides]], [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/public/code/lecture-11/|Code Template for ES 11]], [[InformationRetrievalWS1920/ResultsES11|Table for your results]], Datasets for ES11 (same as for ES 10): [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-genres-train.tsv|Film Genres (train, Variant 1)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-genres-test.tsv|Film Genres (test, Variant 1)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-genres-train.1000.tsv|Film Genres (train, Variant 2)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-genres-test.1000.tsv|Film Genres (test, Variant 2)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-ratings-train.tsv|Film Ratings (train, Variant 1)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-ratings-test.tsv|Film Ratings (test, Variant 1)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-ratings-train.3000.tsv|Film Ratings (train, Variant 2)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/film-ratings-test.3000.tsv|Film Ratings (test, Variant 2)]], [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/public/exercises/sheet-11.pdf|Exercise Sheet 11]], [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/solutions/sheet-11/|Solution]]. * Lecture 12, Tuesday, January 21, 2020 (Knowledge Bases, SPARQL, Translation to SQL): [[https://www.youtube.com/watch?v=6VbfV98dlNc|Video Recording]] ([[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/lecture-12.mp4|MP4 Download]]), [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/public/slides/lecture-12.pdf|Slides]], [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/public/exercises/sheet-12.pdf|Exercise Sheet 12]], [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/public/code/lecture-12/|Code Template for ES12]], Datasets for ES12: [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/wikidata.zip|wikidata.zip (31M triples from Wikidata)]], [[http://ad-teaching.informatik.uni-freiburg.de/InformationRetrievalWS1920/wikidata.5M.zip|wikidata.5M.zip (Subset of wikidata.tsv with only 5M triples)]], [[InformationRetrievalWS1920/ResultsES12|Table for your results]], [[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/solutions/sheet-12/|Solution]]. |
[[https://daphne.informatik.uni-freiburg.de/ws1920/InformationRetrieval/svn/solutions/sheet-12/|Solution]]. |
Welcome to the Wiki of the course "Information Retrieval" in the winter term 2021/2022
Results of the official evaluation of this course
The mode of presentation for this course was changed on short notice because Prof. Dr. Hannah Bast was elected as member of the directorate of the faculty last Thursday. This job is a lot of work and comes with a reduction of the teaching load. Prof. Bast therefore cannot conduct the course as originally planned.
There was a ZOOM meeting on Tuesday, 19.10.2021, where we discussed possible alternatives. 29 students attended. Here is the current status quo:
0. If you want to take the course this semester under the following conditions, you should register on Daphne: https://daphne.informatik.uni-freiburg.de/ws2122/InformationRetrieval .
1. The complete materials (recordings, slides, exercises, code) from the WS 19/20 will be used, with the possible exception of Lecture 13 (this is not yet decided).
2. There will be a Q&A session every Tuesday at 14:15 with Prof. Dr. Hannah Bast via ZOOM. The link to the meeting is: https://uni-freiburg.zoom.us/j/63418599436 . The password is ir-ws2122 . These sessions will not be recorded. The sessions will take as long as you have questions, but no longer than until 15:45 .
3. Before the Q&A session, you should have studied the respective material (slides and recording) and started working on the exercise sheet. In the Q&A session on 26.10.2021, we will talk about Lecture 1 and Exercise Sheet 1. At the very latest, start on the weekend.
4. The deadline for the exercise sheets is Friday at 12:00. The deadline for the first exercise sheet is 29.10.2021. You should submit your solution in a subfolder sheet-dd, where 'dd' is the number of the sheet (01 for the first sheet). After the deadline, you can't submit to that folder anymore. Until that deadline, you can submit as often as you want.
5. Familiarize yourself with the SVN as soon as possible, ideally right NOW. You find the link to your SVN repository once you registered for the course on Daphne. Here are some basic instruction for how SVN works: https://ad-wiki.informatik.uni-freiburg.de/teaching/SVNEnglish. Note that for the purposes of this course, SVN is just as good as Git.
6. We have set up a forum for announcements and questions: https://daphne.informatik.uni-freiburg.de/forum/viewforum.php?f=1177 . Please ask all your questions there and not by sending email (unless it is something very confidential).
7. There will be tutors for the exercise sheets and the sheets will be graded, as usual and as explained on the slides of Lecture 1. The tutors this year are solely Ph.D. students from our chair: Patrick Brosi, Natalie Prange, Matthias Hertel, Johannes Kalmbach. You will be assigned your tutor after the deadline for the first exercise sheet on Friday 29.10.2021. Please take the exercises seriously. They are the most important part of the course. You learn the material from the course only by applying and thinking about it yourself.
8. If you don't want to take the course this semester, but you want to work with us anyway: We offer many exciting projects and theses. There are no particular deadlines, you can start anytime. The procedure is described here: https://ad-wiki.informatik.uni-freiburg.de/teaching/BachelorAndMasterProjectsAndTheses . The list of topics is not up to date. There are always topics available.
Lecture Slides, Video Recordings, Exercise Sheets, and Code
Lecture 1, Tuesday, October 22, 2019 (Introduction, Inverted Index, Zipf's Law): Video Recording (MP4 Download), Slides, Exercise Sheet 1, Code from the lecture + unit tests for Exercise Sheet 1, Dataset for ES1 (189,897 movies with title + description), Solution.
Lecture 2, Tuesday, October 29, 2019 (Ranking and Evaluation): Video Recording (MP4 Download), Slides, Exercise Sheet 2, Code from the lecture + unit tests for Exercise Sheet 2, NEW Movies Dataset (107,769 movies with title + longer description, Movies Training Benchmark, Movies Testing Benchmark, Table for your ranking results, Solution.
Lecture 3, Tuesday, November 5th, 2019 (Efficient List Intersection, Lagrange Multipliers): Video Recording (MP4 Download), Slides, Exercise Sheet 3, Solution.
Lecture 4, Tuesday, November 12th, 2019 (Compression, Codes, Entropy): Video Recording (MP4 Download), Slides, Exercise Sheet 4, Solution.
Lecture 5, Tuesday, November 19th, 2019 (Fuzzy Search, Edit Distance, q-Gram Index): Video Recording (MP4 Download), Slides, Exercise Sheet 5, Code from the lecture + unit tests for Exercise Sheet 5, Wikidata Entities (2,920,180 entities, name + popularity + description + additional information), Wikidata Entities SMALL (100,000 entities), Table for your results, Solution.
Lecture 6, Tuesday, November 26th, 2019 (Web applications, Part 1): Video Recording (MP4 Download), Slides, Exercise Sheet 6, Code skeleton + test queries for Exercise Sheet 6, Wikidata Entities (same as for ES 5), Solution.
Lecture 7, Tuesday, December 3rd, 2019 (Web applications, Part 2): Video Recording (MP4 Download), Slides, Exercise Sheet 7, Code skeleton + test queries for Exercise Sheet 7, Wikidata Entities (same as for ES 5 + 6), Solution.
Lecture 8, Tuesday, December 12th, 2019 (Vector Space Model): Video Recording (edited version from WS 17/18) (MP4 Download), Slides, Exercise Sheet 8, Code from the lecture, Code skeleton for ES 8, Table for your ranking results, Solution.
Lecture 9, Tuesday, December 17th, 2019 (Latent Semantic Indexing): Video Recording (MP4 Download), Slides, Code from the lecture, Exercise Sheet 9, Solution.
Lecture 10, Tuesday, January 7th, 2020 (Classification, Naive Bayes): Video Recording (MP4 Download), Slides, Exercise Sheet 10, Code Template for ES 10, Table for your F-measures, Datasets for ES10: Film Genres (train, Variant 1), Film Genres (test, Variant 1), Film Genres (train, Variant 2), Film Genres (test, Variant 2), Film Ratings (train, Variant 1), Film Ratings (test, Variant 1), Film Ratings (train, Variant 2), Film Ratings (test, Variant 2), Solution.
Lecture 11, Tuesday, January 14th, 2020 (Linear Classifiers, Perceptrons, Logistic Regression): Video Recording (MP4 Download), Slides, Exercise Sheet 11, Code Template for ES 11, Table for your results, Datasets for ES11 (same as for ES 10): Film Genres (train, Variant 1), Film Genres (test, Variant 1), Film Genres (train, Variant 2), Film Genres (test, Variant 2), Film Ratings (train, Variant 1), Film Ratings (test, Variant 1), Film Ratings (train, Variant 2), Film Ratings (test, Variant 2), Solution.
Lecture 12, Tuesday, January 21, 2020 (Knowledge Bases, SPARQL, Translation to SQL): Video Recording (MP4 Download), Slides, Exercise Sheet 12, Code Template for ES12, Datasets for ES12: wikidata.zip (31M triples from Wikidata), wikidata.5M.zip (Subset of wikidata.tsv with only 5M triples), Table for your results.
- Lecture 13, Tuesday, February 1, 2022 (Course Evaluation, Exam, Work at our Chair): This will be a live lecture, via the usual ZOOM link, please do come!