Java Just-in-Time Compilation
Seminar: Java vs. C+-+

Jan Kelch
kelchj@informatik.uni-freiburg.de

Albert-Ludwigs-University Freiburg
Department of Computer Science
Chair of Algorithms and Data Structures

November 24, 2010

Jan Kelch Java JIT Compilation 1/30



Outline

@ JIT-Introduction
Architecture
Execution Techniques

® Optimization Techniques
Adaptive Optimization
Compiler Optimization

©® Conclusion

Insight
References

Jan Kelch Java JIT Compilation

2/30



Architecture
Execution Techniques

Overview

Java Source
Code
Java Runtime
Java Development Kit Em-'!l;t;nen;enl
(JDK)
_— 2
Java Byte Code §
E
""‘“"“': : T'(“;r') Java Virtual Machine (JVM)
Hardware Platform

Jan Kelch Java JIT Compilation 3/30



Architecture
Execution Techniques

JVM intern

runtime data areas

class
class files loader
subsystem
: native i
| method e Java pe method
H area stacks registers :
: stacks '

. native
execution L, nativemethod 001
engine interface libraries

Jan Kelch Java JIT Compilation 4/30



Architecture
Execution Techniques

Execution

e behavior is defined in terms of an instruction set (bytecode)

e specification describes in detail what todo but little about how

Jan Kelch Java JIT Compilation 5/30



Architecture
Execution Techniques

Execution E

e behavior is defined in terms of an instruction set (bytecode)

e specification describes in detail what todo but little about how

How could an implementation execute bytecode?
e interpret
e just-in-time compile
e execute natively in silicon

e use a combination of these

e or ... maybe someone comes up with some new techniques

Jan Kelch Java JIT Compilation 5/30



Architecture
Execution Techniques

Recall Com

Frontend
@ lexical analysis (scanner)
@® syntactical analysis (parser)

© semantical analysis

Jan Kelch Java JIT Compilation 6/30



Architecture
Execution Techniques

Recall Comp

Frontend
@ lexical analysis (scanner)
@® syntactical analysis (parser)

© semantical analysis

Backend
® generate intermediate representation (IR)

@® optimization

© assembly code generation

Jan Kelch Java JIT Compilation 6/30



Architecture
Execution Techniques

Interpreter

Does only the frontend part
e lexical analysis (scanner)
e syntactical analysis (parser)

e semantical analysis

Jan Kelch Java JIT Compilation 7/30



Architecture
Execution Techniques

Interpreter

Does only the frontend part
e lexical analysis (scanner)
e syntactical analysis (parser)

e semantical analysis

Workflow
e reads bytecode by bytecode in a loop
e calls function associated to op-code

e or use TemplateTable (openJDK)

Jan Kelch Java JIT Compilation 7/30



Architecture
Execution Techniques

TemplateTa

the interpreter is generated at runtime
e there are two dispatch tables

1. is the normal mode table

2. is used to bring interpreter to a safepoint
(e.g. when a GC should be made, or synchronization)

TT holds generator functions for each kind of bytecode

per bytecode generate and dispatch assembly code

Jan Kelch Java JIT Compilation

8/30



Architecture
Execution Techniques

TemplateTabl

the interpreter is generated at runtime
e there are two dispatch tables

1. is the normal mode table

2. is used to bring interpreter to a safepoint
(e.g. when a GC should be made, or synchronization)

TT holds generator functions for each kind of bytecode

per bytecode generate and dispatch assembly code

Code example — generator function

void TemplateTable::iconst(int value) {
transition(vtos, itos);

if (value == 0) { __xorl(rax, rax);
} else { __movl(rax, value);
i3

Jan Kelch Java JIT Compilation

8/30



Architecture
Execution Techniques

Just-In-Time

class
class files loader
subsystem
native
method e Java pe method
area stacks registers
stacks

runtime data areas
//A\\
4 u \v/ .
native

e § nazlive method method
engine interface libraries

e compiles bytecode to assembly

e compiles per method

e dynamic bind compiled code

Jan Kelch Java JIT Compilation 9/30




Architecture
Execution Techniques

Recall — Me

Stores method information
e the method’s name
e the method'’s return type (or void)
e the number and types (in order) of the method’s parameters

e the method’s modifiers (some subset of public, private,
protected, static, final, synchronized, native, abstract)

e the method’s bytecode (in case modifier is not native or
abstract)

Jan Kelch Java JIT Compilation 10/30



Architecture
Execution Techniques

Problems

Interpreter

e slow because of line by line model

Jan Kelch Java JIT Compilation 11/30



Architecture
Execution Techniques

Problems

Interpreter l

e slow because of line by line model

Just-in-time compiler \

e tradeoff compilationtime vs. runtime

Jan Kelch Java JIT Compilation 11/30



Adaptive Optimization

Optimization Techniques Camstiter Oiimfrziem

Workflow of the Sun HotspotVM
@ interpreting bytecode

® profiles code-usage
© find hotspots
@ just-in-time compile hotspot code while still interpreting

@ caching compiled code

@ switching to/reuse compiled code

Jan Kelch Java JIT Compilation 12/30



Adaptive Optimization

Optimization Techniques Camstiter Oiimfrziem

Hotspots

e application spends 80% of time in 20% of code
e compilation from many loop-iteration on

e compilation from many method-calls on

e many := 10.000

Jan Kelch Java JIT Compilation

13 /30



Adaptive Optimization

Optimization Techniques Camstiter Oiimfrziem

Method In

What does it do?
e replace method call with corresponding method block J

Jan Kelch Java JIT Compilation 14 /30



Adaptive Optimization

Optimization Techniques Camstiter Oiimfrziem

Method Inli

What does it do?
e replace method call with corresponding method block

And why?
e JIT compilation is performed per method
e for small method reduce method invocation overhead
(e.g. method which only returns a value)
e compiler gets larger blocks which significantly increases
optimization

Jan Kelch Java JIT Compilation

14 /30



Adaptive Optimization

Optimization Techniques Camstiter Oiimfrziem

Example —

Code example

class A {
final int foo() { return 3; }
}

Jan Kelch Java JIT Compilation 15/30



Adaptive Optimization

Optimization Techniques Camstiter Oiimfrziem

Example — Me

Code example

class A {
final int foo() { return 3; }
}

Benefit — inlining a.foo()
e no method call
e no dynamic dispatch

e possible to constant-fold the value
(a.foo()+2 becomes 5 with no code executed at runtime)

e because of dynamic deoptimization JVM can inline without
final-keyword

Jan Kelch Java JIT Compilation

15 /30



Adaptive Optimization

Optimization Techniques Camstiter Oiimfrziem

What is the intension?

e OO-language are dynamic
(dynamic dispatch or virtual method invocation)

e so compiled code can become incorrect til runtime

Jan Kelch Java JIT Compilation 16 /30



Adaptive Optimization

Optimization Techniques Camstiter Oiimfrziem

Dynamic Deo

What is the intension?

e OO-language are dynamic
(dynamic dispatch or virtual method invocation)

e so compiled code can become incorrect til runtime

What does it do?
e jit-compiler records all of the assumptions that the code makes
e so JVM can undo compilation(+optimization) to get bytecode
(for interpretation /recompilation)

e JVM switch back from native to bytecode while method is
still running

Jan Kelch Java JIT Compilation 16 /30



Adaptive Optimization

Optimization Techniques Camstiter Oiimfrziem

Example — L

Code example

class B {
int foo() { return 3; }
}

class C extends B {
int foo() { return 6; }
}

Jan Kelch Java JIT Compilation 17 /30



Adaptive Optimization

Optimization Techniques Camstiter Oiimfrziem

Example — Dy

Code example

class B {
int foo() { return 3; }
}

class C extends B {
int foo() { return 6; }
}

Result
e as long no override for int foo() everything is fine
e problem arises when class C is dynamical loaded
e code with inlined B.foo () is incorrect

e variable in the code of type B can point to objects of either
class B or C

Jan Kelch Java JIT Compilation 17 /30




Adaptive Optimization

Optimization Techniques Camstiter Oiimfrziem

What is the intension?

e hotspots (like loop-iterations) could be in functions which will
be called only once

e so the compiled version would never be executed

Jan Kelch Java JIT Compilation 18 /30



Adaptive Optimization

Optimization Techniques Camstiter Oiimfrziem

What is the intension?

e hotspots (like loop-iterations) could be in functions which will
be called only once

e so the compiled version would never be executed

What does it do?

e the exact opposite of dynamic deoptimization

e JIT compiles code

e interpreted frame is turned into a compiled frame while
method is still running

Jan Kelch Java JIT Compilation 18 /30



Adaptive Optimization

Optimization Techniques Camstiter Oiimfrziem

Example — (

Code example

public class D {
public static void main(String[] arg) {
int sum = O;
for (int index = 0; index < 10*1000%1000; index += 1) {
sum += index;

33}

Jan Kelch Java JIT Compilation 19/30



Adaptive Optimization

Optimization Techniques Camstiter Oiimfrziem

Example — O

Code example

public class D {
public static void main(String[] arg) {
int sum = 0;
for (int index = 0; index < 10*1000%1000; index += 1) {
sum += index;

33}

Timeline without OSR
o Interpreter starts interpreting main () method

e Counter hits 10.000, and compilation begins, but still
interpreting main ()

e Compilation finishes, still interpreting main ()

e main() finishes

Jan Kelch Java JIT Compilation

19/30



Example — O

Adaptive Optimization

Optimization Techniques Camstiter Oiimfrziem

Timeline with OSR

Interpreter starts interpreting main () method

Counter hits 10.000, and compilation begins, but still
interpreting main ()

Compilation finishes, still interpreting main ()
Counter hits 14.000, and interpreting stops

main() is compiled a second time via OSR to allow entry in
the middle of the loop

main() resumes in the compiled code

main() finishes

Jan Kelch Java JIT Compilation

20/30



Adaptive Optimization

Optimization Techniques Cerpilar Opifimizifen

2\ )

- Runtime
VM -GC

- Interpreter

~/iMem
management

synchronization
Server-side applications Client-side applications

Jan Kelch Java JIT Compilation 21/30



Adaptive Optimization

Optimization Techniques Cerpilar Opifimizifen

Sun Hotspot

Client-Compiler
is a simple, fast three-phase compiler

@ front end constructs high-level intermediate representation
(HIR) from BCs

HIR uses static single assignment (SSA)

® platform-specific back end generates low-level intermediate
representation (LIR) from HIR

© performs register allocation on LIR and generates machine
code from it

Jan Kelch Java JIT Compilation

22/30



Sun Hotspot

Adaptive Optimization

Optimization Techniques Camtiter @iz

Server-Compiler

is a high-end fully optimizing compiler

uses an advanced static single assignment (SSA)-based IR for
optimizations

optimizations: dead code elimination, loop invariant hoisting,
common subexpression elimination, constant propagation,
global value numbering, and global code motion

java specific: null-check and range-check elimination,
optimization of exception throwing paths

register allocator is a global graph coloring allocator

Jan Kelch Java JIT Compilation

23/30



Adaptive Optimization

Optimization Techniques Cerpilar Opifimizifen

Compiler Optimizations of both JITCs

e Deep inlining and inlining of potentially virtual calls
e Fast instanceof/checkcast
e Range check elimination

e Loop unrolling

e Feedback-directed optimizations

Jan Kelch Java JIT Compilation 24 /30



Insight
References

Time meas

Code example

public class E {
public static void main(String[] arg) {
0;

int sum
for (int i
sum += i;
+
}
+

0; i < 10*%1000%x1000%1000;

i+=1) {

Jan Kelch Java JIT Compilation




Insight
References

Time measu

Code example

public class E {
public static void main(String[] arg) {
int sum = O;
for (int i = 0; i < 10%1000%1000%1000; i += 1) {
sum += i;
X
X
}

Assesments?! )

Jan Kelch Java JIT Compilation 25/30



~]$ vim E.java
~1$ javac E.java
[jan@hyperBox ~]% time java E

real oml. 4625
user Oml.273s
Sys omo. 143s
[7an@hyperBox ~]$% time java -XX:+PrintCompilation -Djava.compller=NONE E

[7an@hyperBox ~]% time java -XX:+PrintCompilation -client E

java.lanq.ﬂtring::hajf de (64 bytes)
E::main @ 4 (21 bytes

oml. 4565
Oml.270s
ome. 160s
[7an@hyperBox ~]1$% time java -XX:+PrintCompilation -
1% E::main @ 4 (21 bytes)

user
sys

[jan@hyperBox ~1% ]




Insight
References

Choosing C

Using . ..compiler
e none: java -Djava.compiler=NONE [classfile]
e client: java -client [classfile]

e server: java -server [classfile]

Jan Kelch Java JIT Compilation 27 /30



Insight
References

Using . ..compiler

e none: java -Djava.compiler=NONE [classfile]
e client: java -client [classfile]

e server: java -server [classfile]

Some compiler information

e java -XX:+PrintCompilation [classfile]

Jan Kelch Java JIT Compilation

27/30



Insight
References

Tools — part of Hotspot

e |dealGraphVisualizer — tool for examining IR of server compiler

e LogCompilation tool — parse LogCompilation output of the
JVM

e hsdis — disassembler used by hotspot for debugging

Jan Kelch Java JIT Compilation 28 /30



Insight
References

See what th

Tools — part of Hotspot
e |dealGraphVisualizer — tool for examining IR of server compiler

e LogCompilation tool — parse LogCompilation output of the
JVM

e hsdis — disassembler used by hotspot for debugging

Tools — 3rd party

Client Compiler Visualizer: Tool for examining the HIR, LIR, and
linear scan register allocation of the client compiler

Jan Kelch Java JIT Compilation 28 /30



Insight
References

Bill Venners.
Book: Inside the Java Virtual Machine, Ch. 5.

http://www.artima.com /insidejvm /ed2 /jvm.html.

Joe's blog.
Differentiate JVM JRE JDK JIT.
http://javapapers.com/core-java/differentiate-jvm-jre-jdk-jit/.

Oracle.
Wiki: Hotspot Tools.
http://wikis.sun.com/display /HotSpotInternals/HotSpot+Tools.

Oracle Sun Developer Network (SDN).
Article: The Java HotSpot Performance Engine: An In-Depth Look.
http://java.sun.com /developer/technicalArticles/Networking /HotSpot /index.html.

Oracle Sun Developer Network (SDN).

Tutorials & Code Camps: Chapter 8 Continued: Performance Features and

Tools.

http://java.sun.com/developer/onlineTraining/Programming /JDCBook/perf2.html.

Jan Kelch Java JIT Compilation 29 /30



Insight
References

@ Oracle Sun Developer Network (SDN).
White Paper: The Java HotSpot Performance Engine Architecture.
http://java.sun.com/products/hotspot/whitepaper.html.

@ osdir.com.
Sun Hotspot JVM Part 1: The Interpreter.
http://osdir.com/ml/attachments/pdf5YlauhYAr5.pdf.

Jan Kelch Java JIT Compilation 30/30



	JIT-Introduction
	Architecture
	Execution Techniques

	Optimization Techniques
	Adaptive Optimization
	Compiler Optimization

	Conclusion
	Insight
	References


