
JIT-Introduction
Optimization Techniques

Conclusion

Java Just-in-Time Compilation
Seminar: Java vs. C++

Jan Kelch
kelchj@informatik.uni-freiburg.de

Albert-Ludwigs-University Freiburg
Department of Computer Science

Chair of Algorithms and Data Structures

November 24, 2010

Jan Kelch Java JIT Compilation 1 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Outline

1 JIT-Introduction
Architecture
Execution Techniques

2 Optimization Techniques
Adaptive Optimization
Compiler Optimization

3 Conclusion
Insight
References

Jan Kelch Java JIT Compilation 2 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Architecture
Execution Techniques

Overview – the Java components

Jan Kelch Java JIT Compilation 3 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Architecture
Execution Techniques

JVM internal architecture

Jan Kelch Java JIT Compilation 4 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Architecture
Execution Techniques

Execution Engine

• behavior is defined in terms of an instruction set (bytecode)

• specification describes in detail what todo but little about how

How could an implementation execute bytecode?

• interpret

• just-in-time compile

• execute natively in silicon

• use a combination of these

• or ... maybe someone comes up with some new techniques

Jan Kelch Java JIT Compilation 5 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Architecture
Execution Techniques

Execution Engine

• behavior is defined in terms of an instruction set (bytecode)

• specification describes in detail what todo but little about how

How could an implementation execute bytecode?

• interpret

• just-in-time compile

• execute natively in silicon

• use a combination of these

• or ... maybe someone comes up with some new techniques

Jan Kelch Java JIT Compilation 5 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Architecture
Execution Techniques

Recall Compiler Structure

Frontend

1 lexical analysis (scanner)

2 syntactical analysis (parser)

3 semantical analysis

Backend

1 generate intermediate representation (IR)

2 optimization

3 assembly code generation

Jan Kelch Java JIT Compilation 6 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Architecture
Execution Techniques

Recall Compiler Structure

Frontend

1 lexical analysis (scanner)

2 syntactical analysis (parser)

3 semantical analysis

Backend

1 generate intermediate representation (IR)

2 optimization

3 assembly code generation

Jan Kelch Java JIT Compilation 6 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Architecture
Execution Techniques

Interpreter

Does only the frontend part

• lexical analysis (scanner)

• syntactical analysis (parser)

• semantical analysis

Workflow

• reads bytecode by bytecode in a loop

• calls function associated to op-code

• or use TemplateTable (openJDK)

Jan Kelch Java JIT Compilation 7 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Architecture
Execution Techniques

Interpreter

Does only the frontend part

• lexical analysis (scanner)

• syntactical analysis (parser)

• semantical analysis

Workflow

• reads bytecode by bytecode in a loop

• calls function associated to op-code

• or use TemplateTable (openJDK)

Jan Kelch Java JIT Compilation 7 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Architecture
Execution Techniques

TemplateTable – Interpreter

• the interpreter is generated at runtime

• there are two dispatch tables

• 1. is the normal mode table

• 2. is used to bring interpreter to a safepoint
(e.g. when a GC should be made, or synchronization)

• TT holds generator functions for each kind of bytecode

• per bytecode generate and dispatch assembly code

Code example – generator function

void TemplateTable::iconst(int value) {

transition(vtos, itos);

if (value == 0) { __xorl(rax, rax);

} else { __movl(rax, value);

}}

Jan Kelch Java JIT Compilation 8 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Architecture
Execution Techniques

TemplateTable – Interpreter

• the interpreter is generated at runtime

• there are two dispatch tables

• 1. is the normal mode table

• 2. is used to bring interpreter to a safepoint
(e.g. when a GC should be made, or synchronization)

• TT holds generator functions for each kind of bytecode

• per bytecode generate and dispatch assembly code

Code example – generator function

void TemplateTable::iconst(int value) {

transition(vtos, itos);

if (value == 0) { __xorl(rax, rax);

} else { __movl(rax, value);

}}

Jan Kelch Java JIT Compilation 8 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Architecture
Execution Techniques

Just-In-Time Compiler

• compiles bytecode to assembly

• compiles per method

• dynamic bind compiled code

Jan Kelch Java JIT Compilation 9 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Architecture
Execution Techniques

Recall – Method Area

Stores method information

• the method’s name

• the method’s return type (or void)

• the number and types (in order) of the method’s parameters

• the method’s modifiers (some subset of public, private,
protected, static, final, synchronized, native, abstract)

• the method’s bytecode (in case modifier is not native or
abstract)

Jan Kelch Java JIT Compilation 10 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Architecture
Execution Techniques

Problems

Interpreter

• slow because of line by line model

Just-in-time compiler

• tradeoff compilationtime vs. runtime

Jan Kelch Java JIT Compilation 11 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Architecture
Execution Techniques

Problems

Interpreter

• slow because of line by line model

Just-in-time compiler

• tradeoff compilationtime vs. runtime

Jan Kelch Java JIT Compilation 11 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

Combination – Adaptive Compilation

Workflow of the Sun HotspotVM

1 interpreting bytecode

2 profiles code-usage

3 find hotspots

4 just-in-time compile hotspot code while still interpreting

5 caching compiled code

6 switching to/reuse compiled code

Jan Kelch Java JIT Compilation 12 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

Hot Spot Detection

Hotspots

• application spends 80% of time in 20% of code

• compilation from many loop-iteration on

• compilation from many method-calls on

• many := 10.000

Jan Kelch Java JIT Compilation 13 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

Method Inlining

What does it do?

• replace method call with corresponding method block

And why?

• JIT compilation is performed per method

• for small method reduce method invocation overhead
(e.g. method which only returns a value)

• compiler gets larger blocks which significantly increases
optimization

Jan Kelch Java JIT Compilation 14 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

Method Inlining

What does it do?

• replace method call with corresponding method block

And why?

• JIT compilation is performed per method

• for small method reduce method invocation overhead
(e.g. method which only returns a value)

• compiler gets larger blocks which significantly increases
optimization

Jan Kelch Java JIT Compilation 14 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

Example – Method Inlining

Code example

class A {

final int foo() { return 3; }

}

Benefit – inlining a.foo()

• no method call

• no dynamic dispatch

• possible to constant-fold the value
(a.foo()+2 becomes 5 with no code executed at runtime)

• because of dynamic deoptimization JVM can inline without
final-keyword

Jan Kelch Java JIT Compilation 15 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

Example – Method Inlining

Code example

class A {

final int foo() { return 3; }

}

Benefit – inlining a.foo()

• no method call

• no dynamic dispatch

• possible to constant-fold the value
(a.foo()+2 becomes 5 with no code executed at runtime)

• because of dynamic deoptimization JVM can inline without
final-keyword

Jan Kelch Java JIT Compilation 15 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

Dynamic Deoptimization

What is the intension?

• OO-language are dynamic
(dynamic dispatch or virtual method invocation)

• so compiled code can become incorrect til runtime

What does it do?

• jit-compiler records all of the assumptions that the code makes

• so JVM can undo compilation(+optimization) to get bytecode
(for interpretation/recompilation)

• JVM switch back from native to bytecode while method is
still running

Jan Kelch Java JIT Compilation 16 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

Dynamic Deoptimization

What is the intension?

• OO-language are dynamic
(dynamic dispatch or virtual method invocation)

• so compiled code can become incorrect til runtime

What does it do?

• jit-compiler records all of the assumptions that the code makes

• so JVM can undo compilation(+optimization) to get bytecode
(for interpretation/recompilation)

• JVM switch back from native to bytecode while method is
still running

Jan Kelch Java JIT Compilation 16 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

Example – Dynamic Deoptimization

Code example

class B {

int foo() { return 3; }

}

class C extends B {

int foo() { return 6; }

}

Result

• as long no override for int foo() everything is fine

• problem arises when class C is dynamical loaded

• code with inlined B.foo() is incorrect

• variable in the code of type B can point to objects of either
class B or C

Jan Kelch Java JIT Compilation 17 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

Example – Dynamic Deoptimization

Code example

class B {

int foo() { return 3; }

}

class C extends B {

int foo() { return 6; }

}

Result

• as long no override for int foo() everything is fine

• problem arises when class C is dynamical loaded

• code with inlined B.foo() is incorrect

• variable in the code of type B can point to objects of either
class B or C

Jan Kelch Java JIT Compilation 17 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

On Stack Replacement

What is the intension?

• hotspots (like loop-iterations) could be in functions which will
be called only once

• so the compiled version would never be executed

What does it do?

• the exact opposite of dynamic deoptimization

• JIT compiles code

• interpreted frame is turned into a compiled frame while
method is still running

Jan Kelch Java JIT Compilation 18 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

On Stack Replacement

What is the intension?

• hotspots (like loop-iterations) could be in functions which will
be called only once

• so the compiled version would never be executed

What does it do?

• the exact opposite of dynamic deoptimization

• JIT compiles code

• interpreted frame is turned into a compiled frame while
method is still running

Jan Kelch Java JIT Compilation 18 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

Example – On Stack Replacement

Code example

public class D {

public static void main(String[] arg) {

int sum = 0;

for (int index = 0; index < 10*1000*1000; index += 1) {

sum += index;

}}}

Timeline without OSR

• Interpreter starts interpreting main() method

• Counter hits 10.000, and compilation begins, but still
interpreting main()

• Compilation finishes, still interpreting main()

• main() finishes

Jan Kelch Java JIT Compilation 19 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

Example – On Stack Replacement

Code example

public class D {

public static void main(String[] arg) {

int sum = 0;

for (int index = 0; index < 10*1000*1000; index += 1) {

sum += index;

}}}

Timeline without OSR

• Interpreter starts interpreting main() method

• Counter hits 10.000, and compilation begins, but still
interpreting main()

• Compilation finishes, still interpreting main()

• main() finishes

Jan Kelch Java JIT Compilation 19 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

Example – On Stack Replacement

Timeline with OSR

• Interpreter starts interpreting main() method

• Counter hits 10.000, and compilation begins, but still
interpreting main()

• Compilation finishes, still interpreting main()

• Counter hits 14.000, and interpreting stops

• main() is compiled a second time via OSR to allow entry in
the middle of the loop

• main() resumes in the compiled code

• main() finishes

Jan Kelch Java JIT Compilation 20 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

JVM time spend, Sun HotspotVM

Jan Kelch Java JIT Compilation 21 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

Sun HotspotVM Compiler

Client-Compiler

is a simple, fast three-phase compiler

1 front end constructs high-level intermediate representation
(HIR) from BCs

HIR uses static single assignment (SSA)

2 platform-specific back end generates low-level intermediate
representation (LIR) from HIR

3 performs register allocation on LIR and generates machine
code from it

Jan Kelch Java JIT Compilation 22 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

Sun HotspotVM Compiler

Server-Compiler

is a high-end fully optimizing compiler

• uses an advanced static single assignment (SSA)-based IR for
optimizations

• optimizations: dead code elimination, loop invariant hoisting,
common subexpression elimination, constant propagation,
global value numbering, and global code motion

• java specific: null-check and range-check elimination,
optimization of exception throwing paths

• register allocator is a global graph coloring allocator

Jan Kelch Java JIT Compilation 23 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Adaptive Optimization
Compiler Optimization

Sun HotspotVM Compiler

Compiler Optimizations of both JITCs

• Deep inlining and inlining of potentially virtual calls

• Fast instanceof/checkcast

• Range check elimination

• Loop unrolling

• Feedback-directed optimizations

Jan Kelch Java JIT Compilation 24 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Insight
References

Time measurement

Code example

public class E {

public static void main(String[] arg) {

int sum = 0;

for (int i = 0; i < 10*1000*1000*1000; i += 1) {

sum += i;

}

}

}

Assesments?!

Jan Kelch Java JIT Compilation 25 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Insight
References

Time measurement

Code example

public class E {

public static void main(String[] arg) {

int sum = 0;

for (int i = 0; i < 10*1000*1000*1000; i += 1) {

sum += i;

}

}

}

Assesments?!

Jan Kelch Java JIT Compilation 25 / 30





JIT-Introduction
Optimization Techniques

Conclusion

Insight
References

Choosing Compiler – Sun HotspotVM

Using . . . compiler

• none: java -Djava.compiler=NONE [classfile]

• client: java -client [classfile]

• server: java -server [classfile]

Some compiler information

• java -XX:+PrintCompilation [classfile]

Jan Kelch Java JIT Compilation 27 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Insight
References

Choosing Compiler – Sun HotspotVM

Using . . . compiler

• none: java -Djava.compiler=NONE [classfile]

• client: java -client [classfile]

• server: java -server [classfile]

Some compiler information

• java -XX:+PrintCompilation [classfile]

Jan Kelch Java JIT Compilation 27 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Insight
References

See what the compiler do

Tools – part of Hotspot

• IdealGraphVisualizer – tool for examining IR of server compiler

• LogCompilation tool – parse LogCompilation output of the
JVM

• hsdis – disassembler used by hotspot for debugging

Tools – 3rd party

Client Compiler Visualizer: Tool for examining the HIR, LIR, and
linear scan register allocation of the client compiler

Jan Kelch Java JIT Compilation 28 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Insight
References

See what the compiler do

Tools – part of Hotspot

• IdealGraphVisualizer – tool for examining IR of server compiler

• LogCompilation tool – parse LogCompilation output of the
JVM

• hsdis – disassembler used by hotspot for debugging

Tools – 3rd party

Client Compiler Visualizer: Tool for examining the HIR, LIR, and
linear scan register allocation of the client compiler

Jan Kelch Java JIT Compilation 28 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Insight
References

References I

Bill Venners.
Book: Inside the Java Virtual Machine, Ch. 5.
http://www.artima.com/insidejvm/ed2/jvm.html.

Joe’s blog.
Differentiate JVM JRE JDK JIT.
http://javapapers.com/core-java/differentiate-jvm-jre-jdk-jit/.

Oracle.
Wiki: Hotspot Tools.
http://wikis.sun.com/display/HotSpotInternals/HotSpot+Tools.

Oracle Sun Developer Network (SDN).
Article: The Java HotSpot Performance Engine: An In-Depth Look.
http://java.sun.com/developer/technicalArticles/Networking/HotSpot/index.html.

Oracle Sun Developer Network (SDN).
Tutorials & Code Camps: Chapter 8 Continued: Performance Features and
Tools.
http://java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html.

Jan Kelch Java JIT Compilation 29 / 30



JIT-Introduction
Optimization Techniques

Conclusion

Insight
References

References II

Oracle Sun Developer Network (SDN).
White Paper: The Java HotSpot Performance Engine Architecture.
http://java.sun.com/products/hotspot/whitepaper.html.

osdir.com.
Sun Hotspot JVM Part 1: The Interpreter.
http://osdir.com/ml/attachments/pdf5YlauhYAr5.pdf.

Jan Kelch Java JIT Compilation 30 / 30


	JIT-Introduction
	Architecture
	Execution Techniques

	Optimization Techniques
	Adaptive Optimization
	Compiler Optimization

	Conclusion
	Insight
	References


