

Java vs C++

Threads in Java and C++

Niklas Meinzer

February 2, 2011

Introduction

Why Multitasking?

● The speed of a single CPU
 core is limited
 → multiple core machines

● Internet applications

●No active waiting for I/O operations

Threads vs Processes

Processes
 independet instance
 private memory

space
 Inter-process-

communication via
OS

Threads
 subset of a process
 shared memory
 communication via

process
 scheduled by OS

Both are methods of parallelization, but on a
different level

Threads vs Processes

Process 1Process 1

Thread 1.1Thread 1.1

Thread 1.2Thread 1.2
Thread 1.1Thread 1.1

Process 2Process 2

Time

Thread 2.2Thread 2.2
Thread 2.1Thread 2.1

Threads vs Processes

Process 1Process 1

Thread 1.1Thread 1.1

Thread 1.2Thread 1.2
Thread 1.1Thread 1.1

Process 2Process 2

Time

Thread 2.2Thread 2.2
Thread 2.1Thread 2.1

Memory

Process 1Process 1 Process 2Process 2

Threads vs Processes

 Each thread has its
own:
 Stack Pointer

 Program Counter

 Registers

 Scheduling Properties

 All Threads within a
process share:

 The program code

 The heap

 Files

Threads vs Processes

Processes
 ”Heavyweight”
 Stability

 Communication more
complicated

Threads
 ”Lightweight”
 one Thread can bring

all down
 Easy communication

via shared memory

Trade off

Problems

 Memory conflicts

 Thread interference

 Deadlock

Threads in Java and C++

Java
 supported ever since
 improvements in Java

5.0 (2004) with

java.util.concurrent

C++
 no thread support in

standard
 different solutions

available
 plans to include

concurrency in future
releases

Java

 Every Java Program consists of at least one
thread – the main thread

 Can spawn more Threads using Thread or
Runnable objects

 Syncronisation can be used to prevent memory
consistency errors

java.lang.Thread

 Classes that extent Thread can be run
concurrently

 calculation must be done in run() method
 Instances launch a new Thread using

Thread.start()
class MyThread extends Thread
{
 public void run()

{
// Do something

}
}

public static void main(...)
{
 MyThread t = new MyThread();
 t.start(); // Start the Tread
 // Continue with something else
}

Interface Runnable

 All classes that are intended to be used as a
Thread must implement Runnable
(even Thread)

 more flexible

class MyRunnable
extends someSuperClass
implements Runnable
{
 public void run()

{
// Do something

}
}

public static void main(...)
{
 Thread t = new Thread(new MyRunnable());

 t.start(); // Start the Tread
 // Continue with something else
}

Mutex: Object Locks

 To ensure mutual exclusion Java uses Object
Locks

 Every Object has a corresponding monitor that
can only be aquired by one thread at one time

 there are three different ways of using Object
Locks in Java

Synchronized Methods

 Can only be executed by one Thread at a time
 Before a Thread calls a synchronized method it

must aquire the corresponding Objects monitor

class myArray
{
 // …

 public synchronized void initialize()
 {
 // Initialize Array
 }
}

Synchronized Static Methods

 Like synchronized methods, but with static
keyword

 In this case no other instance can call the
method

class myArray
{
 // …

 public static synchronized void initialize()
 {
 // Initialize Array
 }
}

Synchronized Blocks

 Synchronized blocks offer programmers more
fine tuning of synchronization

 The Object that provides the lock must be
specified explicitly

Object myLock = new Object();

/* Some operations that
* are not critical
*/

synchronized(myLock)
{
 // critical code
}

// More non critical code

Collaboration of Threads

 wait()
 notifyAll()

 Serve the coordination of Threads and save
time through ”smart” scheduling

 can only be called within synchronized code

Producer-Consumer-Problem

Producer
Consumer

Buffer

wait() & notifyAll()

 if a Thread executes wait() it will go to sleep

 notifyAll() activates all sleeping threads

 there is no way of waking up a specific thread

C++

 No threading in current standard

 Thread libraries:
 pthreads
 Boost Threads

 Threads will be included in the next standard
(C++0x)

pthreads

 C style library

 Uses IEEE POSIX 1003.1c standard (1995)

→ pthreads

pthreads

 very low level
 e.g lets user define stack size and adress
 but features most commonly used thread tools

 mutexes
 signal and wait

 Often called the Assembler of threaded
programming

pthreads usage

 pthread_create(thread, attr, function*, arg*)

 creates and launches a new thread

 function* is a pointer to a function that will be run
by the thread

 arg*: pointer to functions arguments

Boost

 Large C++ library collection

 A lot of libraries for all kinds of purposes

 Boost::thread provides threading infrastructure

Boost Threads usage

 Boost thread can launch procedures as new
threads

 The constructor takes one function as argument
and immediately starts the thread

void myFunction()
{
 // do something
}

int main(int argc, char* argv[])
{
 boost::thread myThread(myFunction); // Thread starts
 // Do something else
}

Funktor

 An easy way to create a threadable Object

 An object that overloads the () operator and
can thus be called like a function

 The boost::thread constructor will call the ()
function and run it as a thread

Functor example

class TSP
{

public:
 void addNode{
 //...
 }
 void addEdge{
 //...
 }

 void operator()()
 {
 // solve TSP in a seperate thread
 }

private:
 Node *nodeList;
}

C++0x

 next C++ standard

 will include std::thread

 very similar to boost

Experiments

Test 1: Thread creation

 Create n threads that count up to 1000

Main Thread creates

n dummy threads

Test results (thread creation)

 Create n threads that count up to 1000

n Java pthreads boost threads

1000 0.150 s 0.28 s 0.013 s

10,000 0.740 s 0.240 s 0.770 s

100,000 5.700 s 1.100 s 0.667 s

1,000,000 56.000 s 5.100 s 6.800 s

Test results (thread creation)

100 500 1000 1500 2000 5000 10000

0

100

200

300

400

500

600

Java
pthreads
boost

n threads

m
ill

is
e

co
n

d
s

Test results (thread creation)

50000 100000 500000 1000000

0

10000

20000

30000

40000

50000

60000

Java
pthreads
boost

n threads

m
ill

is
e

co
n

d
s

Test 2: Locking

 What is the overhead of making a function
thread safe

Thread
Counter

Increase()

1st run

Thread

Counter

safeIncrease()

2nd run

Test results (Locking)

Goal Java pthreads boost threads

unlocked locked unlocked locked unlocked locked

100,000 1 ms 5 ms 1 ms 4 ms 1 ms 7 ms

500,000 2 ms 20 ms 5 ms 14 ms 4 ms 17 ms

1,000,000 3 ms 23 ms 5 ms 22 ms 5 ms 35 ms

10,000,000 23 ms 235 ms 50 ms 219 ms 58 ms 356 ms

100,000,000 255 ms 2253 ms 494 ms 2194 ms 524 ms 3599 ms

500,000,000 1182 ms 11140 ms 2481 ms 11010 ms 2629 ms 18108 ms

~ factor 10 ~ factor 4.5 ~ factor 7

Sources

 oracle.com – Java Tutorials
 ”Inside the Java Virtual Machine” by Bill Venners

 computing.llnl.gov – Tutorials on POSIX Threads
 www.boost.org
 antonym.org – Boost threads tutorial

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36

