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Libraries & Compiler

 There are different String-Libraries in C++
 string.h (C Standard Library)
 std::string (Standard Template Library)
 qString

 Their implementation is Compiler dependant



  

cstring

 Is part of the C Standard Library 
 Stored as a char array
 Example: 

 char message[] = “hello”;

 Null Terminated Character Sequence
 '\0' marks the end of the String
 Because of limited memory at that time

'h' 'e' 'l' 'l' 'o' '\0'



  

strlen

 The string-length is determined by searching for 
 the first ocurrance of the '\0’ character
 strlen(“Hello”) → 5

 Which takes O(n) and is therefore rather bad for 
String processing

'h' 'e' 'l' 'l' 'o' '\0'



  

Dynamic strings

 The size of a cstring can be defined 
dynamically during runtime
 char *msg = new char[length]

 But cannot be resized afterwards...
 You have to manually allocate memory

 char* newmsg = malloc(strlen(msg) + 1);

 And use strcpy or strcat to copy or concatenate 
the string into the new one
 strcpy(newmsg, msg);

 Which is unhandy and prone to errors...



  

cstring

 Common errors when using cstrings
 Not allocating additional space for '\0'

 char msg[5];
 *msg = “Hallo”; //terminating '\0' is not in msg 

 Causing buffer overflows
 char msg[1];  //@0x7fffc71e2a4f
 char msg2[1]; //@0x7fffc71e2a4e
 strcpy(msg2,”abc”); //copy “abc” in msg2
 cout << msg[0]; //returns “b”

 Both can result in undefined behaviour!



  

std::string

 Is a class of the C++ Standard Template 
Library

 Removes many of the problems with cstrings
 memory allocation, null termination 

 Offers useful String-functions like
 Comparison, concatenation, find,...

 Can be constructed from a cstring and 
converted to a cstring again



  

std::string

 The string class is an instantiation of the 
basic_string class template
 typedef basic_string<char> string;
 template<charT, char_traits<charT>, 

allocator<charT> >

 Thus the string class can handle different 
character types, like char (8bit) or wchar (32bit)

 Or even user defined objects



  

String Implementation

 The String Implementation in gcc
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String Optimizations

 Small-String-Optimization
 Reserve
 Shrink-to-fit
 Lazy Evaluation (Copy-On-Write)
 Reference Counter
 Call-By-Reference



  

Small string optimization

 Some Libraries implement small string 
optimization (like boost::const_string<>)



  

String growth

 Strings can grow dynamically with append or 
the operator += 
 String text = “Hello “; text += “World”;

 A “realloc”-like operation is triggered
 Allocate a new block of memory

 Multiple of the current capacity (e.g. factor of 2)
 Copy all elements from the String's old memory to 

the new one.
 Destroy the object in the old memory
 Deallocate the memory



  

String growth



  

reserve

 Use reserve to avoid unnecessary allocations
 Reserve(size_t n) forces the container to 

change it's capacity to at least n.
 As long as str.size() < str.capacity there is no 

need to reallocate memory
 If you can approximate how many elements will 

end up in your container, use reserve!
 Another Strategy is to reserve the maximum 

space you could ever need, then once you've 
added all your data, trim off any excess 
capacity



  

Shrink-to-fit

 Use swap() to fit the capacity to your actual 
string size.
 String s; 
 s.reserve(1000);
 //fill s...
 s.swap(s); or s.reserve(0);

 All Elements are copied by s's copy 
constructor, but only as much memory is 
allocated as needed for all elements.



  

Lazy Evalution (Copy-on-Write)

 Naïve approach:
 String s1 = “Hello”;
 String s2 = s1; //copy constructor of s2 is called

 Why doing an expensive copy when s2 hasn't 
been used yet?

 Better: make s2 a reference to s1!
 And just defer the copy work until s2 is really 

modified!



  

Reference counting

 Count how many references are made to an 
object.

 When nobody refers to that object, it destroys 
itself

 Saves Memory and time, no need to construct 
and destruct copies of the same object value.



  

Call-By-Reference

 call-by-reference
 Passing Strings to functions:

 Void print_the_string(string str); 
 A temporary string object is generated and the 

copy constructor is called
 Copying the String takes O(n) + time to allocate the 

heap memory
 Better: Use a reference when passing Strings

 void print_the_string(string& str)
 Local variable str now refers to the String
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string::find

 size_t find ( const string& str, size_t pos = 0 ) 
const;

 string str("Schifffahrt");
 size_t found = str.find(“fahrt”);

'S' 'c' 'h' 'I' 'f' 'f' 'f' 'f' 'a' 'h' 'r' 't'

X X X



  

stringstream

 Provides an interface to manipulate strings as if 
they were input/output streams

 Maintains pointer to a stringbuf object
 The stringbuffer associates the input or output 

sequence with a sequence of arbitrary 
characters

 When characters are written to the stream, if 
the write position goes beyond the buffer end, 
stringstream automatically increase the buffer 
size



  

Multibyte Functions

 wctomb (char *string, wchar_t wchar)
 converts the wide character code wchar to its 

corresponding multibyte character sequence

 Example:
 Character: M

 UTF-8: 0x4D
 UTF-32:0x0000004D

 Character:  二 (Japan thing)
 UTF-8: 0xE4BA8C
 UTF-32:0x00004E8C 



  

Sources

 Scott Meyers. 1998. Effective C++ (2nd Ed.): 50 Specific Ways to Improve Your 
Programs and Designs. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 
USA. 

 Scott Meyers. 1995. More Effective C++: 35 New Ways to Improve Your Programs 
and Designs. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. 

 Scott Meyers. 2001. Effective STL: 50 Specific Ways to Improve Your Use of the 
Standard Template Library. Addison-Wesley Longman Ltd., Essex, UK, UK. 

 Optimizations That Aren't (In a Multithreaded World)

 http://www.gotw.ca/publications/optimizations.htm

 Google ;-)

http://www.gotw.ca/publications/optimizations.htm
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