

Java vs. C++
Seminar WS 2010 / 2011

Strings in C++

Session 11, Wednesday January 19th, 2011

Michael Pereira Neves

Overview

 cstring
 std::string
 String Implementations
 String Optimizations
 stringstream
 Some String-Functions (find, multibyte)
 Performance Java vs. C++

Libraries & Compiler

 There are different String-Libraries in C++
 string.h (C Standard Library)
 std::string (Standard Template Library)
 qString

 Their implementation is Compiler dependant

cstring

 Is part of the C Standard Library
 Stored as a char array
 Example:

 char message[] = “hello”;

 Null Terminated Character Sequence
 '\0' marks the end of the String
 Because of limited memory at that time

'h' 'e' 'l' 'l' 'o' '\0'

strlen

 The string-length is determined by searching for
 the first ocurrance of the '\0’ character
 strlen(“Hello”) → 5

 Which takes O(n) and is therefore rather bad for
String processing

'h' 'e' 'l' 'l' 'o' '\0'

Dynamic strings

 The size of a cstring can be defined
dynamically during runtime
 char *msg = new char[length]

 But cannot be resized afterwards...
 You have to manually allocate memory

 char* newmsg = malloc(strlen(msg) + 1);

 And use strcpy or strcat to copy or concatenate
the string into the new one
 strcpy(newmsg, msg);

 Which is unhandy and prone to errors...

cstring

 Common errors when using cstrings
 Not allocating additional space for '\0'

 char msg[5];
 *msg = “Hallo”; //terminating '\0' is not in msg

 Causing buffer overflows
 char msg[1]; //@0x7fffc71e2a4f
 char msg2[1]; //@0x7fffc71e2a4e
 strcpy(msg2,”abc”); //copy “abc” in msg2
 cout << msg[0]; //returns “b”

 Both can result in undefined behaviour!

std::string

 Is a class of the C++ Standard Template
Library

 Removes many of the problems with cstrings
 memory allocation, null termination

 Offers useful String-functions like
 Comparison, concatenation, find,...

 Can be constructed from a cstring and
converted to a cstring again

std::string

 The string class is an instantiation of the
basic_string class template
 typedef basic_string<char> string;
 template<charT, char_traits<charT>,

allocator<charT> >

 Thus the string class can handle different
character types, like char (8bit) or wchar (32bit)

 Or even user defined objects

String Implementation

 The String Implementation in gcc

Overview

 cstring
 std::string
 String Implementations
 String Optimizations
 stringstream
 Some String-Functions (find, multibyte)
 Performance Java vs. C++

String Optimizations

 Small-String-Optimization
 Reserve
 Shrink-to-fit
 Lazy Evaluation (Copy-On-Write)
 Reference Counter
 Call-By-Reference

Small string optimization

 Some Libraries implement small string
optimization (like boost::const_string<>)

String growth

 Strings can grow dynamically with append or
the operator +=
 String text = “Hello “; text += “World”;

 A “realloc”-like operation is triggered
 Allocate a new block of memory

 Multiple of the current capacity (e.g. factor of 2)
 Copy all elements from the String's old memory to

the new one.
 Destroy the object in the old memory
 Deallocate the memory

String growth

reserve

 Use reserve to avoid unnecessary allocations
 Reserve(size_t n) forces the container to

change it's capacity to at least n.
 As long as str.size() < str.capacity there is no

need to reallocate memory
 If you can approximate how many elements will

end up in your container, use reserve!
 Another Strategy is to reserve the maximum

space you could ever need, then once you've
added all your data, trim off any excess
capacity

Shrink-to-fit

 Use swap() to fit the capacity to your actual
string size.
 String s;
 s.reserve(1000);
 //fill s...
 s.swap(s); or s.reserve(0);

 All Elements are copied by s's copy
constructor, but only as much memory is
allocated as needed for all elements.

Lazy Evalution (Copy-on-Write)

 Naïve approach:
 String s1 = “Hello”;
 String s2 = s1; //copy constructor of s2 is called

 Why doing an expensive copy when s2 hasn't
been used yet?

 Better: make s2 a reference to s1!
 And just defer the copy work until s2 is really

modified!

Reference counting

 Count how many references are made to an
object.

 When nobody refers to that object, it destroys
itself

 Saves Memory and time, no need to construct
and destruct copies of the same object value.

Call-By-Reference

 call-by-reference
 Passing Strings to functions:

 Void print_the_string(string str);
 A temporary string object is generated and the

copy constructor is called
 Copying the String takes O(n) + time to allocate the

heap memory
 Better: Use a reference when passing Strings

 void print_the_string(string& str)
 Local variable str now refers to the String

Overview

 cstring
 std::string
 String Implementations
 String Optimizations
 stringstream
 Some String-Functions (find, multibyte)
 Performance Java vs. C++

string::find

 size_t find (const string& str, size_t pos = 0)
const;

 string str("Schifffahrt");
 size_t found = str.find(“fahrt”);

'S' 'c' 'h' 'I' 'f' 'f' 'f' 'f' 'a' 'h' 'r' 't'

X X X

stringstream

 Provides an interface to manipulate strings as if
they were input/output streams

 Maintains pointer to a stringbuf object
 The stringbuffer associates the input or output

sequence with a sequence of arbitrary
characters

 When characters are written to the stream, if
the write position goes beyond the buffer end,
stringstream automatically increase the buffer
size

Multibyte Functions

 wctomb (char *string, wchar_t wchar)
 converts the wide character code wchar to its

corresponding multibyte character sequence

 Example:
 Character: M

 UTF-8: 0x4D
 UTF-32:0x0000004D

 Character: 二 (Japan thing)
 UTF-8: 0xE4BA8C
 UTF-32:0x00004E8C

Sources

 Scott Meyers. 1998. Effective C++ (2nd Ed.): 50 Specific Ways to Improve Your
Programs and Designs. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

 Scott Meyers. 1995. More Effective C++: 35 New Ways to Improve Your Programs
and Designs. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

 Scott Meyers. 2001. Effective STL: 50 Specific Ways to Improve Your Use of the
Standard Template Library. Addison-Wesley Longman Ltd., Essex, UK, UK.

 Optimizations That Aren't (In a Multithreaded World)

 http://www.gotw.ca/publications/optimizations.htm

 Google ;-)

http://www.gotw.ca/publications/optimizations.htm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

