
Address space of a process Memory management in C++ Platform specific issues

Memory management in C++

Simon Rettberg

December 1, 2010

1 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Topics

1 Address space of a process

2 Memory management in C++

3 Platform specific issues

2 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Topics

1 Address space of a process

2 Memory management in C++

3 Platform specific issues

3 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Virtual address space of a process

Schematics of the address space

Program
(machine code)

Heap Stack

max heap/stack size

Virtual: Every process only sees its own address space

Real memory usage grows with allocated heap space

...was already explained in second talk

4 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Stack vs. heap

Stack:

Limited space

”Automatic” freeing of variables

Faster allocation of variables

Variables that got allocated last will be deleted first

Heap:

Much more space (still limited)

Manual freeing of variables and memory blocks
C++: new/delete, C: malloc()/free()

Management overhead when allocating/freeing

Allocation and freeing can happen in any order
→ fragmentation can occur

5 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Allocating and freeing memory

Heap after some allocations

A few blocks have been freed again

More allocations

6 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Keeping track of the heap

The heap needs to be managed:

Keep track of which areas are allocated

Which areas are free

Where the heap currently ends

Different approaches to this.

Simplified example of heap management

size of chunk
flags ("in use", ...)

address returned by malloc() or new

heap

7 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Know your limits

C++ doesn’t do any bounds checking for you

Make sure your pointers stay inside buffers

Don’t use any pointers that point to freed memory

Another source for horrible bugs is a double-delete/free

Breaking any of these rules can crash your program immediately, or
even worse, produce really weird behaviour later on, so it takes you
hours to track down the real source of the problem.

8 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Buffer overflows can be exploited

i n t x = 5 ;
char temp [2 0 0] ;
g e t s (temp) ;

What happens on the stack

char temp[200]; int x = 5; old EBP
return-

address
....

<uninitialized> 0x00000005 0x31556900 0x12345678

after executing "gets(temp);"
with user input "<200*x>JKLMDDDD9876"

char temp[200]; int x = 5; old EBP
return-

address
....

"xxxxx....xx" 0x4d4c4b4a 0x44444444 0x36373839

"JKLM" "DDDD" "9876"

9 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Normal return from a function

What happens on return

current instruction
(EIP)

program code heap

stack
local variables return address

(old value of EIP)
parameters

to this function

After returning:

current instruction
(EIP)

program code heap

stack
local variables return address

(old value of EIP)
parameters

to this function

Stackframe #X

Stackframe #X-1

10 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Exploited return from a function

What happens on return

current instruction
(EIP)

program code heap

stack local variables
(evil code)

return address
(overwritten)

parameters
to function

After returning:

current instruction
(EIP)

program code heap

stack old local vars
(evil code)

non-accessible broken stack

Stackframe #X

11 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Topics

1 Address space of a process

2 Memory management in C++

3 Platform specific issues

12 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Garbage collection in C++

There is no fully automatic garbage collection in C++
→ allocated memory has to be kept track of and freed if not
needed anymore

Who is the owner of an object or memory area and
responsible for deleting
(important when dealing with libraries, especially C-only)

In C++, thanks to classes having constructors and
desctructors, it is easy to maintain a clear hierarchy

13 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

RAII

Resource Acquisition Is Initialization

The object that allocates a memory block is also responsible
for deleting it

Objects can easily be nested this way (see next slides)

Requires all classes to adhere to this concept

14 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

RAII

Automatic memory management in C++ (stack)

c l a s s Course {
char t i t l e [2 0] ;
i n t g r a d e ;

} ;

c l a s s Student {
Course f a v o r i t e C o u r s e ;
Course h a t e d C o u r s e ;

} ;

i n t f () {
Student max ;

} // l e a v i n g f w i l l d e s t r o y max

Automatic memory management in Java (heap)

c l a s s Course {
char [] t i t l e = new char [2 0] ;
i n t g r a d e = 0 ;

}

c l a s s Student {
Course f a v o r i t e C o u r s e = new Course () ;
Course h a t e d C o u r s e = new Course () ;

}

i n t f () {
Student max = new Student () ;

} // garbage c o l l e c t o r o f j a v a w i l l
// take ca r e o f c l e a n i n g memory up

Stackframe of f()
max : Student

hatedCourse : Course

title : char[20] grade :int

favoriteCourse : Course

title : char[20] grade :int

15 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

RAII

Manual memory management in C++ (heap)

c l a s s Course {
char ∗ t i t l e ;
i n t g r a d e ;

p u b l i c :
Course () { t i t l e = new char [2 0] ; }
˜ Course () { d e l e t e [] t i t l e ; }

} ;
c l a s s Student {

Course ∗ f a v o r i t e C o u r s e , ∗h a t e d C o u r s e ;
p u b l i c :

Student () { f a v o r i t e C o u r s e = new Course () ; h a t e d C o u r s e = new Course () ; }
˜ Student () { d e l e t e f a v o r i t e C o u r s e ; d e l e t e h a t e d C o u r s e ; }

} ;
i n t f () {

Student ∗max = new Student () ;
d e l e t e max ; // o b j e c t h i e r a r c h y g e t s d e l e t e d

}

StackHeap

max : Student*
favoriteCourse : Course*

hatedCourse : Course* grade : int

title : char*

grade : int

title : char*

16 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

RAII - A simple example

deleting a simple object hierarchy

Student

Course

"Max\0" "Muster\0"

favoriteCourse : Course*
hatedCourse : Course*

title : char*
grade : int

Course
title : char*
grade : int

max : Student*

17 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

RAII - A simple example

deleting a simple object hierarchy

Student

Course

"Max\0" "Muster\0"

favoriteCourse : Course*
hatedCourse : Course*

title : char*
grade : int

Course
title : char*
grade : int

max : Student*
delete

17 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

RAII - A simple example

deleting a simple object hierarchy

Student

Course

"Max\0" "Muster\0"

favoriteCourse : Course*
hatedCourse : Course*

title : char*
grade : int

Course
title : char*
grade : int

max : Student*
delete

delete

17 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

RAII - A simple example

deleting a simple object hierarchy

Student

Course

"Max\0" "Muster\0"

favoriteCourse : Course*
hatedCourse : Course*

title : char*
grade : int

Course
title : char*
grade : int

max : Student*
delete

delete

delete

17 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

RAII - A simple example

deleting a simple object hierarchy

Student

Course

"Muster\0"

favoriteCourse : Course*
hatedCourse : Course*

title : char*
grade : int

Course
title : char*
grade : int

max : Student*
delete

delete

17 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

RAII - A simple example

deleting a simple object hierarchy

Student

"Muster\0"

favoriteCourse : Course*
hatedCourse : Course*

Course
title : char*
grade : int

max : Student*
delete

17 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

RAII - A simple example

deleting a simple object hierarchy

Student

"Muster\0"

favoriteCourse : Course*
hatedCourse : Course*

Course
title : char*
grade : int

max : Student*
delete

delete

17 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

RAII - A simple example

deleting a simple object hierarchy

Student

"Muster\0"

favoriteCourse : Course*
hatedCourse : Course*

Course
title : char*
grade : int

max : Student*
delete

delete

delete

17 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

RAII - A simple example

deleting a simple object hierarchy

Student
favoriteCourse : Course*
hatedCourse : Course*

Course
title : char*
grade : int

max : Student*
delete

delete

17 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

RAII - A simple example

deleting a simple object hierarchy

Student
favoriteCourse : Course*
hatedCourse : Course*

max : Student*
delete

17 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

RAII - A simple example

deleting a simple object hierarchy

max : Student*

17 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Live demo

Live demo: C++ vs. Java

18 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Topics

1 Address space of a process

2 Memory management in C++

3 Platform specific issues

19 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Paging (1)

What is the paging unit?

Memory management unit

Translation from virtual addresses (as seen by the process) to
real addresses

Supports swapping (move memory blocks to external storage
if another process needs more physical memory)

Fully transparent to processes

Not a part of C++, affects memory management in general
on modern architectures

20 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Paging (2)

Translation from virtual to real addresses

08162431 15 723

...
...

...
...

...
...

4K
 m

em
or

y
pa

ge

10 1210

Linear address:

page directory

32 bit PD
entry

page table

32 bit PT
entry

Not all virtual addresses translate to real ones
Accessing invalid addresses leads to program termination
(Segmentation fault on *nix)

21 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Endianness

The endianness of a platform decides in which order multibyte
integers are represented in memory
Example: int i = 300; // 4 byte integer: 0x0000012C

Little endian (eg. x86) 0x2C 0x01 0x00 0x00

Big endian (eg. PowerPC) 0x00 0x00 0x01 0x2C

→ Be careful when writing serializers or network apps (or 300
might become 738263040)

22 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Why only 2/3 GB on 32bit?

Last gigabyte is reserved for kernel libraries, drivers etc.

On Windows by default only 2 GB (so highest bit of pointers
is always 0)

Bonus question: Given two pointers to the beginning and the end
of an array. How do you calculate the address of the middle?

char* start char* endchar* mid = ?

23 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

Why only 2/3 GB on 32bit?

Assume start = 0xA1112200, end = 0xA1112244

Simple approach:

char *mid = (start + end) / 2;

0xA1112200

+ 0xA1112244

0x142224444

Overflow! → 0x42224444 / 2 = 0x21112222

Safe approach:

char *mid = start + (end - start) / 2;

0xA1112244

- 0xA1112200

0x00000044

→ 0x00000044 / 2 = 0x00000022

0xA1112200

+ 0x00000022

0xA1112222

No overflow, 0xA1112222 is correct.

24 Simon Rettberg Memory management in C++

Address space of a process Memory management in C++ Platform specific issues

That’s all, folks! Any questions?

25 Simon Rettberg Memory management in C++

	Address space of a process
	Memory management in C++
	Platform specific issues

