
Java versus C++
Seminar WS 2010 / 2011

Session 2, Wednesday October 27, 2010
(Machine code generation from C / C++)

P f D H h B t

(Machine code generation from C / C++)

Prof. Dr. Hannah Bast
Chair for Algorithms and Data Structures

Department of Computer ScienceDepartment of Computer Science
University of Freiburg

Overview of my talky

 Machine code generation from C / C++
– Basic principle

– Some demos

 Machine code
– Short history, x86 and RISC

– x86 general-purpose registers

– x86 basic instructions

– x86 memory allocation: heap and stack

– x86 / AMD64 function calling

– x86 / AMD64 streaming registers

2

Machine code generation from C / C++g

 Basic principle of any interpreter / compiler:
– Take each line from the code
– And translate it to an equivalent sequence of machine

code instructionscode instructions
– [Show live example]
– Quite easy in principle: we could write a compiler forQ y p p p

basic C (variables, while, if, functions, I/O) in a week
– It wouldn't produce very efficient code though ...

 The key to producing efficient code:
– Do not translate the code line by line, but consider

appropriate blocks of code together talk on optimizationappropriate blocks of code together talk on optimization
– [Continue live example]

T d t d f thi d t d t d
3

To understand any of this, we need to understand
how machine code works ... hence this talk

A history of machine code (x86-biased)y ()

 8-bit architectures
– 1972: Intel 8008 (the world's first 8-bit microprocessor)
– 1974: Intel 8080 (added some 16-bit operations)

1976 Zilog Z80 (the most s ccessf l one still in se toda)– 1976: Zilog Z80 (the most successful one, still in use today)

 16-bit architectures
1978: Intel 8086 (the first member of the x86 family)– 1978: Intel 8086 (the first member of the x86 family)

 32-bit architectures
1985: Intel 80386 aka i386 (backwards compatible with 8086)– 1985: Intel 80386 aka i386 (backwards-compatible with 8086)

– 1993: Intel Pentium (again, backwards-compatible)

 64-bit architectures referred to as x86-64 or x64 64 bit architectures
– 2003: AMD 64, Intel 64 (backwards-compatible with x86)

The vast majority of desktop computers laptops

referred to as x86-64 or x64

4

The vast majority of desktop computers, laptops,
and servers today run x86 / x64 machine code

RISC / Load-store architecture

 RISC = Reduced Instruction Set Computing
– Basic idea: very small and simple instruction set, enabling

faster implementation of hardware

I ti ti l d/ t f t f i t– In practice: operations load/store for transfer registers
memory; all other operations on registers only

– Most code is for x86 however which is not RISC (althoughMost code is for x86, however, which is not RISC (although
some ideas have been picked up over the years, e.g. Pentium)

– Overproportionally more work went into the x86 optimziation p p y p
 little performance difference between x86 and RISC today

– Famous RISC example: the ARM architecture (32-bit)

Game Boy, BlackBerry, Palm, iPod, iPhone, iPad, G1, ...

So beware that some of the things we find in this seminar
ma o ma not be applicable fo these de icesmay or may not be applicable for these devices

5

x86 Registersg

 Intel 8086 registers (16-bit)
AX BX CX DX l i t (ith i l– AX, BX, CX, DX: general-purpose registers (with special
usage as "accumulator", "base", "counter", "data")

– SI, DI: source index, destination indexSI, DI: source index, destination index
– SP, BP: stack pointer, base pointer
– CS, DS, SS, ES: segment registers (code, data, stack, extra)

 Intel 80836 registers (32-bit)
– EAX, EBX, ECX, EDX, etc. [E = extended]

"segmentation"
 talk on C++
memo mngment– additional segment registers FS and GS

– eight 64-bit streaming registers MMX0, MMX1, ...

AMD O t (64 bit)

memory mngment

 AMD Opteron (64-bit)
– RAX, RBX, RCX, RDX, etc. [R = ?]
– additional 64-bit registers R8 R9 R15– additional 64-bit registers R8, R9, ..., R15
– sixteen 128-bit streaming registers XMM0, XMM1, ...

6

x86 Basic instructions 1/2

 Assigment
– mov X, Y : assign the value of X to Y

– Here, and for many commands, X and Y can be registers,
% b l t l ti l b le.g. %rax, or absolute memory locations, e.g. label, or

memory locations pointed to by a register, e.g. 4(%rsp).

 Arithmetic and bitwise operations Arithmetic and bitwise operations
– add, sub, mul, div, inc (increment), dec (decrement), ...

and or xor sal (shift left) sar (shift right)– and, or, xor, sal (shift left), sar (shift right), ...

 Suffixes
no suffix = 16 bits l = 32 bits ("long") q = 64 bits ("quad")– no suffix = 16 bits, l = 32 bits (long), q = 64 bits (quad)

– for example: mov, movl, movq, add, addl, addq, ...

7

x86 Basic instructions 2/2

 Stack operations
– push X : push X on stack (decreases SP = stack pointer)

– pop X : pop X from stack (increases SP = stack pointer)

 Comparisons and jumps
– cmp X, Y : compare X and Y and remember < oder > or =
– je X, jne X, jl X : jump to X if equal, not equal, less, ...
– jmp X : jump unconditionally to X

F ti lli Function calling
– call X : push instruction pointer and jump to X

ret : pop instruction pointer and jump to that address– ret : pop instruction pointer and jump to that address
– enter X : create a new stack frame with room for X bytes
– leave : restore the old stack frameleave : restore the old stack frame

8

Memory allocation: heap and stacky p

 Heap
– General-purpose memory allocation

– At any time we may get a request for any number of bytes

– At any time we may no longer need any number of bytes

– The part of memory where this is organized is called the
heap auf Deutsch Haufen talk on C++ memory allocationheap, auf Deutsch Haufen talk on C++ memory allocation

 Stack
M ll ti f l b l d l l i bl f ti– Memory allocation for global and local variables, function
parameters, and function results

– Has the LIFO property: last object in first object outHas the LIFO property: last object in, first object out

– Therefore we can organize these objects on a stack (Stapel)

9

Memory allocation on the stacky

10

x86 Function calling 1/3 g

 C-Style calling convention (most common)
– Stack frame = part of stack that belongs to the function we

are currently in, left end = SP < right end = BP

P h th f ti t th t k f i ht t l ft– Push the function arguments on the stack, from right to left

– Then call pushes the instruction pointer (IP) on the stack

The first action of the called function (the callee) must be– The first action of the called function (the callee) must be

to push the BP on the stack, and then

set BP = SP effectively starting a new stack frameset BP = SP, effectively starting a new stack frame

– Before the callee returns, must pop BP of the stack again

– Then ret pops the IP from the stack and jumps thereThen ret pops the IP from the stack and jumps there

– Now we are back in the calling function with its stack frame

– Now calling function must pop the arguments it pushedNow calling function must pop the arguments it pushed

11

x86 Function calling 2/3 g

 C-Style calling convention example

12

x86 Function calling 3/3g

 Standard call (e.g. the Win32 API uses this)
– Very similar to C-style call

– Assumes fixed number of arguments for each function call

– Again caller pushes arguments on the stack, but callee is
now responsible for removing them from the stack again

– Advantage: less work everytime we call the function

– Disadvantage: wrong number of arguments is fatal now

h Shortcuts
– enter 10 = push BP; mov SPBP; sub 10, SP

– leave = mov BPSP; pop BP

– pusha = push AX, CX, DX, BX, SP, BP, SI, DI

DI SI BP SP BX DX CX AX– popa = pop DI, SI, BP, SP, BX, DX, CX, AX

13

AMD64 Function callingg

 Arguments no longer passed via the stack
– But via registers (AMD64 has many of them)

– In particular for system calls

– This gives significant speedups in practice

14

SSE

 SSE = Streaming SIMD Extensions
– Motivation: carry out the same instruction for a number

of operators at the same time (SIMD = Single instruction,
lti l d t)multiple data)

– Large (nowadays 128-bit) registers XMM0, XMM1, ...

Originally 8 such registers AMD64 now has 16– Originally 8 such registers, AMD64 now has 16

– Example: eight 4-byte integers x1, x2, x3, x4 (stored at
address X) and y1, y2, y3, y4 (stored at address Y), thenaddress X) and y1, y2, y3, y4 (stored at address Y), then
compute x1+y1, x2+y2, x3+y3, x4+y4 (to be stored at
address Z) with just three instructions as follows

movaps XMM0, X
addps XMM0, Y
movaps Z XMM0movaps Z, XMM0

15

Literature / Links

 x86 and RISC
– http://en.wikipedia.org/wiki/X86_architecture
– http://en.wikipedia.org/wiki/RISC

 x86 registers and instruction set
– http://en.wikipedia.org/wiki/X86#x86_registers

htt // iki di / iki/X86 i t ti li ti– http://en.wikipedia.org/wiki/X86_instruction_listings

 x86 Linux assembler tutorial (the basics, very nice)
http://www m hoeppner de/projects/asm ws pdf– http://www.m-hoeppner.de/projects/asm_ws.pdf

 x86 function calling, C-style vs. Standard
– http://unixwiz net/techtips/win32-callconv-asm html– http://unixwiz.net/techtips/win32-callconv-asm.html

 SSE = Streaming SIMD Extensions
– http://en.wikipedia.org/wiki/Streaming SIMD Extensionshttp://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

16

17

