RTL-optimization in GCC

Alexander Nutz

1/25

Overview

v

Background: Syntax Tree & Control Flow Graph
What is RTL?

» what is it used for?
» basic structure
> history

v

v

RTL-optimizations

> overview
» explanation of some

v

Examples

N

o

Background: Syntax Trees

» High-level programming languages: highly nested structure
(parentheses, loops, complex expressions,...)

» Parsing naturally gives tree-structured representation
(derivation tree of grammar)

» Assembler; “flat”

» Compliler has to flatten the tree

3/2

Background: Syntax Trees - Example Program

int sum(int input) {
i = input;
n=0;
while (i > 0)
n=mn+ (i——);
return n;

}

4/25

Abstract Syntax Tree - Example

AST-lowering Example (1)

6/25

AST-lowering Example (2)

7/25

[s[e=T=1~]

. Mu () 1o
nﬁnmn Hn ’ﬂmmﬁn
g

Control Flow Graph

Graph with

» Statements/Basic blocks as Nodes

» Edges according to control flow

n=20

- yes
i>0 return n

8/2

5

ASTs and CFGs: Conclusion

» AST

» focus on syntactic structure
» transformations are made on it
» generated from source code/other AST

» CFG

» focus on control flow

» many analyses are based on it (f.i. dataflow analyses)
» generated from AST

Both are representations of the program (part) but different aspects
are made explicit.

Both can have annotations containing additional high-level
information.

RTL is...

» “Register Transfer Language”

» GCC's traditional intermediate representation

v

flat — sequence of instructions

LISP-like syntax

(lots of) additional information (like control flow, data
dependencies,...)

can be close to hardware or “not-so-close” (f.i. handles
pseudo-registers as well as hard registers)

v

v

v

» Also used for machine descriptions in GCC (not in scope here)

Basic RTL Syntax
The basic RTL units are called insns — roughly equivalent to
statements/assembler lines

Example insns:

(insn 11 10 12 4 test.cpp:4
(set (reg:SI 59 [n]) (const_int 0 [0x0]))

~1 (nil))

(jump _insn 12 11 13 4 test.cpp:4
(set (pc) (label ref 24))

~1 (nil))

Shape of insn, jump insn, call insn:

(<insn—type> <ld> <prevld> <nextld>
<insn—code in machine description> <program locati
<side effect pattern>
<register dependencies> <misc. notes on regs>)

11/25

RTL past vs. today

Figure: Old GCC architecture

Figure: GCC 4.0 (April 2005):
Integration of Tree-SSA

pictures taken from [1] 12/25

RTL vs. Tree-SSA

| Tree-SSA | RTL |
better for optimizations
closer to programmer closer to assembler

machine independent | possibly machine dependent
middle-end middle-to-back-end

Machine independet optimizations are moved to Tree-SSA — still in
progress.

RTL-passes in GCC

Generation of exception
landing pads

CFG cleanup

Forward propagation of
single-def values

Common subexpression
elimination

Global common
subexpression elimination

Loop optimization
Jump bypassing
If conversion

Web construction

Instruction combination
Register movement
Mode switching
optimization

Modulo scheduling
Instruction scheduling
Register allocation
Basic block reordering
Variable tracking
Delayed branch scheduling
Branch shortening

Register-to-stack
conversion

N
o

RTL-passes in GCC

>

Generation of exception
landing pads

CFG cleanup

Forward propagation of
single-def values

Common subexpression
elimination

Global common
subexpression
elimination

Loop optimization
Jump bypassing
If conversion

Web construction

Instruction combination
Register movement

Mode switching
optimization

Modulo scheduling
Instruction scheduling
Register allocation
Basic block reordering
Variable tracking

Delayed branch scheduling
Branch shortening

Register-to-stack
conversion

(Global) Common Subexpression Elimination

1. Detect common subexpressions (dataflow analysis)
2. Compute cost of replacement

3. Replace if cheaper

Local:

» within basic blocks

» simple analysis
Global:

» whole procedure
» more complex analysis needed

» does partial redundancy elimination

Common Subexpression Elimination — Example

i =a+b xc
j=1+bxc
b=b+ 4
k =b *x ¢

is optimized to:

newvar = b x ¢
i = a 4+ newvar
j = i 4+ newvar
b=b+ 4
k =b *x ¢

16 /25

Partial Redundancy Elimination — Example

is optimized to:

if(b) if(b) {
{ x = 4
x = 4 newvar = x * Yy
} }
else else {
{ x =5
x =5 newvar = x * Yy
= x %y i = newvar
))
j =x %y J = newvar

17 /25

Loop Optimization

v

Loop invariant motion

» move statements that are not changed in the loop outside of it

v

Loop unrolling

» reduce Loop condition checking-overhead by copying the body

v

Loop peeling
» copy first or last few iterations to the outside of the loop
» Loop unswitching

» replace if-then-else in loop-body by top-level if-then else and
two copies of the loop

18 /25

Loop Unrolling — Example

is optimized to:
int x;

for (x=0;x<100;x+=5)

int x; {
for (x=0;x<100;x++) remove (x)
{ remove (x+
remove(x); remove (x+
} remove (x+
remove (x+

Loop Peeling — Example

is optimized to:

int p = 10;

- :) . 0] = x[0] + x[10];
for(int i=0;i<10;++17) Bf/(Er](int i[—_]l'i<1([)'+—|!i)
{ L ’

_— . A
ATl S L T U QY EF R
p=i; 1

}

Loop Unswitching — Example

is optimized to:
int i, w, x[100], y[100];

if (w) {
int i, w; for (i=0;i<100;i++) {
int[] x[100], y[100]; x[i] =x[i] + y[i];
for(i=0;i<100;i++) { y[i] = 0;
il = xli] + 0l 3
if (w) } else {
y[i] = 0; for (i=0;i<100;i++) {
} }X[i]=x[i]+>’[i]?

}

Register Allocation

» Liveness-Analysis
= a variable is dead at a program point if is not read until
the program stops, live otherwise

» Interference/preference graph

> in GCC/IRA

N
N

N
o

Register Allocation - Example

a =1
b =2
c =3
d =4
e =a+b
f=e+ c
g="f+d
r=2=a8
return r

23 /25

Register Allocation - Example - Result

regl =1

reg2 = 2

store memlLocl 3
store memloc2 4

regl = regl + reg?
regl += load memlocl
regl += load memloc2
return regl

24 /25

Register Allocation (3)

Things are further complicated by:

» different kinds of registers

> optimizing across regions/interprocedural optimizations
» different costs for register operations/spilling

> coalescing may increase outdegree

N
]

N
o

=)

) & D & &

From Source to Binary: The Inner Workings of GCC:
http://www.redhat.com/magazine/002dec04 /features/gcc/

Wikipedia (english) articles on: Loop Unrolling, Loop Peeling,

Loop Unswitching, Register Allocation, Partial Redundancy
Elimination, Common Subexpression Elimination, GNU
Compiler Collection

GCC Internals — RTL:
http://gcc.gnu.org/onlinedocs/gccint/RTL.html

GCC Internals — RTL-passes:
http://gcc.gnu.org/onlinedocs/gccint/RTL-passes.html

GCC Internals — Debugging Options:
http://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html

GCC Internals — Optimize Options:
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Vladimir N. Makarov, The Integrated Register Allocator for
GCC, in: Proceedings of the GCC Developers’ Summit 2007

25 / 25

	RTL - Introduction
	RTL - Optimizations

