
General Introduction Java C++ Tests End

C++ Gui vs. Java Gui

Daniel Brand, Franz Dietrich

February 9, 2011

General Introduction Java C++ Tests End

Inhaltsverzeichnis

1 General Introduction
Techniques

2 Java
AWT
Swing
SWT
Swing vs. SWT

3 C++
Introduction to the code.
Gtk explained

4 Tests

5 End
Conclusion
Sources

General Introduction Java C++ Tests End

Why talk about GUIs?

End-user programs often use GUIs

On low-end machines GUI performance is important

Is the programming language important?

General Introduction Java C++ Tests End

Backends

Hardwareacceleration

Systemcalls

General Introduction Java C++ Tests End

Hardwareacceleration

2D
copying data (videoram to videoram)
draw a solid color
draw lines
convert mono data to color data

3D
frontbuffer
backbuffer
depthbuffer
rasterizers
texture

Overlaybuffer

Hardwaresprites

General Introduction Java C++ Tests End

Systemcalls

open window

draw primitives

draw images

callbacks and signals

General Introduction Java C++ Tests End

General usage

request a window

get a canvas

insert a layout container

add widgets (buttons areas etc)

catch signals

General Introduction Java C++ Tests End

AWT

threadsafe

native look and feel

complex peers (emulate behavior if necessary)

AWT always should behave the same on every host system

General Introduction Java C++ Tests End

Swing

extends AWT

not threadsafe

lightweight (emulates functions)

huge code base and hierarchy

quite flexible to use

WORE concept (Write once, run everywhere)

General Introduction Java C++ Tests End

Auto dispose

Swing objects are normal Java objects

the garbage collector removes them

you don’t have manage your memory

General Introduction Java C++ Tests End

SWT

not threadsafe

heavyweight

simple peers (just wrappers)

may behave different depending on host system

WOTE (write once, test everywhere)

General Introduction Java C++ Tests End

SWT dispose

you have to dispose every SWT component you create

if a parent is disposed all children will be disposed as well

you can optimize your memory usage

General Introduction Java C++ Tests End

What do we expect?

Swing has to emulate all functions

SWT uses native functions

before Java 1.4 Swing was really slow

Sun worked a lot to minimize this disadvantage

Swing uses the garbage collector

General Introduction Java C++ Tests End

RAM usage

Open a window with one single button that exits the program.

RAM usage

Win SWT Win Swing Linux SWT Linux Swing
9.2MB 28MB 23.9MB 23.9MB

General Introduction Java C++ Tests End

RAM usage 2

Swing has a huge code base and a lot to load

SWT uses the buttons of the host system - Swing has to load its
own buttons

General Introduction Java C++ Tests End

Buttons

Add 4000 Buttons to one window and measure the time to resize

Buttons

Win SWT Win Swing Linux SWT Linux Swing
3 sec < 1 sec 1:04 min 1 sec

General Introduction Java C++ Tests End

Buttons 2

Swing is quite fast in building its layout

but Swing can resize the buttons to fit! (1px per button...)

Swing seems to ignore buttons outside the window

SWT has more problems to restore its layout

General Introduction Java C++ Tests End

Pixel

Drawing single pixels in different colors

Pixel

Win SWT Win Swing Linux SWT Linux Swing
2 sec 300ms 1307.0 ms 800 ms

Note: Changing the color is a really expensive operation for the
hardware

General Introduction Java C++ Tests End

Pixel 2

Swing uses hardware acceleration on windows

Changing the color is an expensive operation

SWT uses GDI+ on Windows, Swing DirectX

General Introduction Java C++ Tests End

Transparent rectangles

Draw 3600 transparent and overlapping rectangles

Transparent rectangles

Win SWT Win Swing Linux SWT Linux Swing
7.4 sec 20ms 562.0ms 15.6 sec

General Introduction Java C++ Tests End

Transparent rectangles 2

Swing has full hardware acceleration on Windows

General Introduction Java C++ Tests End

Draw text

Draw Text into a drawing area.

Draw text

Win SWT Win Swing Linux SWT Linux Swing
12 sec 250 ms 1507.0 ms 32 sec

General Introduction Java C++ Tests End

Conclusion

Swing is quite good on Windows

SWT is not faster than Swing

General Introduction Java C++ Tests End

Sources

http://www.ibm.com/developerworks/grid/library/os-swingswt/

http://en.wikipedia.org/

http://msdn.microsoft.com/en-us/library/ms536334.aspx

http://www.eclipse.org/swt/

General Introduction Java C++ Tests End

C++ and Gtkmm

What we are going to talk about.

Introduction to Gtkmm

architecture

backends

performance tests

comparison

General Introduction Java C++ Tests End

Quick recall

To create a Window in general we have to:

request a window

get a canvas

insert a layout container

add widgets (buttons areas etc)

catch signals

General Introduction Java C++ Tests End

Introduction to Gtkmm

OneButton_main.cpp

#include " OneButton . h "
#include <gtkmm . h>

i n t main (i n t argc , char ∗argv [])
{

Gtk : : Main k i t (argc , argv) ;

OneButton win ;

k i t . run (win) ;

return 0;
}

General Introduction Java C++ Tests End

Introduction to Gtkmm

OneButton.h

i fndef GTKMM_EXAMPLE_HELLOWORLD_H
#define GTKMM_EXAMPLE_HELLOWORLD_H

#include <gtkmm / but ton . h>
#include <gtkmm / window . h>

class OneButton : public Gtk : : Window
{

public :
OneButton () ;
v i r t u a l ~OneButton () ;

protected :
/ / S igna l handlers :
void on_but ton_c l icked () ;

/ / Member widgets :
Gtk : : Button m_button ;

} ;

#endif / / GTKMM_EXAMPLE_HELLOWORLD_H

General Introduction Java C++ Tests End

Introduction to Gtkmm

OneButton.cpp

#include " OneButton . h "

OneButton : : OneButton ()
: m_button (" He l lo World ") / / c reates a new but ton wi th l a b e l " He l lo World " .
{

set_border_width (1 0) ;
m_button . s i g n a l _ c l i c k e d () . connect (s igc : : mem_fun(∗ this ,

&OneButton : : on_but ton_c l icked)) ;
/ / This packs the but ton i n t o the Window (a con ta ine r) .
add (m_button) ;
m_button . show () ;

}

OneButton : : ~ OneButton () { }

void OneButton : : on_but ton_c l icked ()
{

g tk_main_qui t () ;
}

General Introduction Java C++ Tests End

Layers to draw with Gtkmm

Gtkmm

Cairo

Xlib

Driver

General Introduction Java C++ Tests End

Gtkmm

Gtkmm is managing the gui and some other components

Organize widgets

Provide standard widgets

Manage signals

Provide abstract classes and interfaces to create customized
widgets

Some sort of garbage collection with manage()

General Introduction Java C++ Tests End

Gtkmm

Other uses of this abstractionlayer:

Provide a rich set of different themes

Being portable

Platform independent functions for recently used documents,
drag and drop, copy and paste

Avoid duplication of code

General Introduction Java C++ Tests End

Cairo

Cairo is drawing the gui elements in most cases

Draw geometric shapes

Draw lines

Draw bitmaps

Draw beziers

Draw text

General Introduction Java C++ Tests End

XLib

XLib provides an abstraction over the X server protocol

Manage windows (open, close, move, minimize, maximize, etc.)
Lowlevel draw abilities (multiple targets)

Line
Circle
Pixel
bitmap

Lowlevel management of capabilities

Input event generation

General Introduction Java C++ Tests End

Drivers

Drivers provide means to access hardware. They already provide
some abstraction but are still very close to the hardware.

Initialize and setup the hardware
Drawing in different areas

Line
Pixel
copy memory region

General Introduction Java C++ Tests End

What did we test?

In general we tried to test the different GUI toolkits on different
platforms. We had the following testcases.

RAM usage

4000 buttons

Pixels

Transparent rectangles

Drawing Text

General Introduction Java C++ Tests End

RAM usage

Open a window with one single button that exits the program

RAM Usage

Win SWT Win Swing Linux SWT Linux Swing Linux Gtk
9.2MB 28MB 23.9MB 23.9MB 2.9MB

General Introduction Java C++ Tests End

Buttons

Add 4000 Buttons to one window and measure the time to resize

Buttons

Win SWT Win Swing Linux SWT Linux Swing Linux Gtk
3 sec < 1 sec 1:04 min 1 sec 4:07 min

Notes:
Pool computers did suck a lot less in java SWT (17sec)

Could not test gtk on pool computers because of missing libraries

Windows SWT has a slow reaction to user interaction even when
done

General Introduction Java C++ Tests End

Analyse

Analyse the really bad performance of Gtk

Its not the creation of buttons (which takes 37ms)

Inserting the Buttons into a scrollable window results in a much
faster start and resize

Drawing seems not to be the problem either (redraw works quite
fast)

So my conlusion is that Gtk seems to have a problem with the
layouting (when adding a huge list of widgets)

General Introduction Java C++ Tests End

Pixels

Drawing single pixels in different colors

Pixels

Win SWT Win Swing Linux SWT Linux Swing Linux Gtk
2 sec 300ms 1307.0 ms 800 ms 320ms

Note: Changing the color is a really expensive operation for the
hardware

General Introduction Java C++ Tests End

Transparent rectangles

Draw 3600 transparent and overlapping rectangles

Transparent rectangles

Win SWT Win Swing Linux SWT Linux Swing Linux Gtk
7.4 sec 20ms 562.0ms 15.6 sec 310ms

Notes:

Result on Linux depends on the driver (Intel appears to have a
bug -> demonstration)

Performance depends on the hardware

General Introduction Java C++ Tests End

Draw Text

Draw Text into a drawing area

Draw Text

Win SWT Win Swing Linux SWT Linux Swing Linux Gtk
12 sec 250 ms 1507.0 ms 32 sec 2 sec

General Introduction Java C++ Tests End

Conclusion

Look at the specific needs you have

There is no good or bad

with Java Swing it is more easy to write simple GUIs

Where Ram usage matters take Gtk

Where maximum independence is needed take Java Swing

The more performace you want the closer you need to get to the
hardware

Gtk/SWT is more deterministic in its performance

General Introduction Java C++ Tests End

Sources and Links

http://www.gtk.org/

http://www.gtkmm.org/en/

http://cairographics.org/manual/

Wikipedia

http://www.x.org/wiki/Development

	General Introduction
	Techniques

	Java
	AWT
	Swing
	SWT
	Swing vs. SWT

	C++
	Introduction to the code.
	Gtk explained

	Tests
	

	End
	Conclusion
	Sources

