4644
Comment:
|
11546
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
#acl Patrick Brosi:read,write Björn Buchhold:read,write Claudius Korzen:read,write Axel Lehmann:read,write Raghu Rajan: read,write Johanna Goetz:read,write Natalie Prange:read,write Hannah Bast:read,write All:read = numpy cheat sheet = |
#acl All:read = NumPy/SciPy Cheat Sheet = This cheat sheet is a quick reference for !NumPy / !SciPy beginners and gives an overview about the most important commands and functions of !NumPy and !SciPy that you might need on solving the exercise sheets about Linear Algebra in Information Retrieval. It doesn't claim to be complete and will be extended continuously. If you think that some important thing is missing or if you find any errors, please let us know. |
Line 7: | Line 9: |
=== What is NumPy? === === What is SciPy? === |
|
Line 9: | Line 16: |
TODO (Hannah): for dense matrices (matrix vs. array) as well as sparse matrices (csr_matrix((data, indices, indptr)) | === Dense matrices === TODO: matrix vs. array === Sparse matrices === Construct a ''Compressed Sparse Row matrix'': {{{ scipy.sparse.csr_matrix(arg, shape=None, dtype=None, copy=False) arg: * A dense matrix; or * Another sparse matrix; or * A tuple (m, n), to construct an empty matrix with shape (n, m); or * A tuple (data, (rows, cols), to construct a matrix A where A[rows[k], cols[k]] = data[k]; or * A tuple (data, indices, indptr) }}} Examples: {{{ from scipy.sparse import csr_matrix }}} |
Line 17: | Line 47: |
TODO (Raghu): examples of dot product (dense * dense, dense * sparse, sparse * sparse), usage of both matrix.dot() and * (and how it behaves in different contexts), constant factor adding / multiplication | === Constant addition === Addition of a constant adds it to every element of the matrix (only for dense matrices) {{{ >>> B_dense = numpy.matrix([[2, 1], [3, 4]], dtype=float) >>> B_dense + 10 matrix([[ 12., 11.], [ 13., 14.]]) }}} === Multiplication by a constant === Multiplication by a constant multiplies every element of the matrix by that constant (both for sparse and dense matrices) {{{ >>> A_sparse = csr_matrix([[1, 0], [0, 1], [3, 2]], dtype=float) >>> (A_sparse * 10).todense() matrix([[ 10., 0.], [ 0., 10.], [ 30., 20.]]) }}} === Multiplication === * produces the '''normal''' matrix multiplication between a csr_matrix (sparse) and a numpy matrix (dense).<<BR>> * produces the '''element-wise''' matrix multiplication for numpy arrays (also dense). In these cases Python broadcasts the operands in case their dimensions mismatch. matrix.dot() produces the normal matrix multiplication between a csr_matrix and a numpy matrix '''except''' in the case of a dense.dot(sparse) matrix multiplication. The result of a matrix multiplication between: *a sparse and a sparse matrix is sparse *a sparse and a dense matrix is dense *a dense and a dense matrix is dense https://docs.scipy.org/doc/scipy/reference/sparse.html <<BR>> http://www.scipy-lectures.org/intro/numpy/operations.html {{{ >>> A_sparse = csr_matrix([[1, 0], [0, 1], [3, 2]], dtype=float) >>> B_dense = numpy.matrix([[2, 1], [3, 4]], dtype=float) >>> A_dense = A_sparse.todense() >>> B_sparse = csr_matrix(B_dense) ## Sparse with sparse >>> C_sparse = A_sparse * B_sparse #(Normal Matrix multiplication, 3x2 matrix with 2x2 matrix) >>> C_sparse.todense() matrix([[ 2., 1.], [ 3., 4.], [ 12., 11.]]) >>> C_sparse = A_sparse.dot(B_sparse) #(Normal Matrix multiplication, 3x2 matrix with 2x2 matrix) >>> C_sparse.todense() matrix([[ 2., 1.], [ 3., 4.], [ 12., 11.]]) ## Sparse with dense >>> C_dense = A_sparse * B_dense #(Normal Matrix multiplication, 3x2 matrix with 2x2 matrix) >>> C_dense matrix([[ 2., 1.], [ 3., 4.], [ 12., 11.]]) >>> C_dense = A_sparse.dot(B_dense) #(Normal Matrix multiplication, 3x2 matrix with 2x2 matrix) >>> C_dense matrix([[ 2., 1.], [ 3., 4.], [ 12., 11.]]) ## Dense with sparse >>> C_dense = A_dense * B_sparse >>> C_dense matrix([[ 2., 1.], [ 3., 4.], [ 12., 11.]]) >>> A_dense.dot(B_sparse) matrix([[ <2x2 sparse matrix of type '<class 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format>, <2x2 sparse matrix of type '<class 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format>], [ <2x2 sparse matrix of type '<class 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format>, <2x2 sparse matrix of type '<class 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format>], [ <2x2 sparse matrix of type '<class 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format>, <2x2 sparse matrix of type '<class 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format>]], dtype=object) ## Dense with dense >>> C_dense = A_dense.dot(B_dense) #(Normal Matrix multiplication, 3x2 matrix with 2x2 matrix) >>> C_dense matrix([[ 2., 1.], [ 3., 4.], [ 12., 11.]]) >>> C_dense = A_dense * B_dense #(Normal Matrix multiplication, 3x2 matrix with 2x2 matrix) >>> C_dense matrix([[ 2., 1.], [ 3., 4.], [ 12., 11.]]) }}} {{{ ## numpy.ndarray >>> A_ndarray = numpy.array([[1, 0], [0, 1], [3, 2]]) >>> B_ndarray = numpy.array([[2, 1], [3, 4]]) >>> C_ndarray = numpy.array([2, 1]) >>> B_ndarray * B_ndarray #(Element-wise Matrix multiplication, 2x2 matrix with 2x2 matrix) array([[ 4, 1], [ 9, 16]]) >>> B_ndarray.dot(B_ndarray) #(Normal Matrix multiplication, 2x2 matrix with 2x2 matrix) array([[ 7, 6], [18, 19]]) >>> A_ndarray.dot(B_ndarray) #(Normal Matrix multiplication, 3x2 matrix with 2x2 matrix) array([[ 2, 1], [ 3, 4], [12, 11]]) >>> C_ndarray * B_ndarray #(Broadcasting) array([[4, 1], [6, 4]]) }}} |
Line 27: | Line 182: |
TODO (Natalie): numpy.where, numpy.argsort, numpy.min, numpy.argmin, numpy.round (useful for tests), ... | === numpy.round === Takes an array and rounds its values to the given number of decimals. Note that for values exactly halfway between rounded decimal values, Numpy rounds to the nearest even value. [[https://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.around.html|numpy.around]] {{{ >>> numpy.round([1.98, 2.34, 4.76], 1) [ 2. 2.3 4.8] }}} {{{ >>> numpy.round([1.5, 0.5, 3.5, 4.5], 0) [ 2. 0. 4. 4.] }}} === numpy.min === Takes an array and returns its minimum value. If an axis is specified, returns the minimum along the axis. [[https://docs.scipy.org/doc/numpy/reference/generated/numpy.amin.html|numpy.amin]] {{{ >>> numpy.min([[5, 0, 1], [4, 3, 2]]) 0 }}} {{{ >>> numpy.min([[5, 0, 1], [4, 3, 2]], axis=0) [4 0 1] }}} === numpy.argmin === Takes an array and returns the index of the minimum value of the flattened array. If an axis is specified, returns the indices of the minimum values along the axis. [[https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmin.html|numpy.argmin]] {{{ >>> numpy.argmin([[5, 0, 1], [4, 3, 2]]) 1 }}} {{{ >>> numpy.argmin([[5, 0, 1], [4, 3, 2]], axis=0) [1 0 0] }}} === numpy.argsort === Takes an array a and returns an array of indices that sort a. Optionally, you can specify the axis along which a will be sorted. By default the axis is -1. [[https://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html|numpy.argsort]] {{{ >>> numpy.argsort([[0, 4, 0], [4, 3, 2]], axis=0) [[0 1 0] [1 0 1]] }}} {{{ >>> numpy.argsort([[0, 4, 0], [4, 3, 2]], axis=1) [[0 2 1] [2 1 0]] }}} === numpy.where === Takes a condition and optionally two array-like objects x and y. If x and y are specified, returns an array that contains elements from x where condition is true and elements from y elsewhere. [[https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html|numpy.where]] {{{ >>> x = numpy.array([[5, 4, 3], [2, 1, 0]]) >>> y = numpy.array([[0, 1, 2], [3, 4, 5]]) >>> numpy.where(x > 3, x, y) [[5 4 2] [3 4 5]] }}} |
Line 32: | Line 244: |
Matrix (usually square) in which all entries are zero, except on the main diagonal. Use [[https://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.diag.html | numpy.diag]] to either create a diagonal matrix from a givin main diagonal, or extract the diagonal matrix from a given matrix. | Matrix (usually square) in which all entries are zero, except on the main diagonal. Use [[https://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.diag.html | numpy.diag]] to either create a diagonal matrix from a given main diagonal, or extract the diagonal matrix from a given matrix. |
Line 47: | Line 259: |
For a sparse matrix, use [[https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.spdiags.html#scipy.sparse.spdiags|scipy.spare.spdiags]] | For a sparse matrix, use [[https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.spdiags.html#scipy.sparse.spdiags|scipy.spare.spdiags]]. |
Line 51: | Line 263: |
Special diagonal ''m''*''m'' matrix where all elements on the main diagonal are 1. Sometimes denoted as '''1'''. Read as the '1' of matrix world. For example, a ''n''*''m'' matrix ''A'' multiplied with an ''m''*''m'' identity matrix yields ''A'' again. Use [[https://docs.scipy.org/doc/numpy/reference/generated/numpy.identity.html|numpy.identity(k)]] to create a ''k''*''k'' identity matrix. | Special diagonal ''m''*''m'' matrix where all elements on the main diagonal are 1. Read as the '1' of matrix world. For example, a ''n''*''m'' matrix ''A'' multiplied with an ''m''*''m'' identity matrix yields ''A'' again. Use [[https://docs.scipy.org/doc/numpy/reference/generated/numpy.identity.html|numpy.identity(k)]] to create a ''k''*''k'' identity matrix. |
Line 68: | Line 280: |
For a sparse matrix, use [[https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.identity.html|scipy.sparse.identity]] | For a sparse matrix, use [[https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.identity.html|scipy.sparse.identity]]. |
Line 73: | Line 285: |
{{{numpy.triu}}} creates the upper ({{{u}}}), {{{numpy.triu}}} the lower ({{{l}}}) triangular matrix from a given matrix. | [[https://docs.scipy.org/doc/numpy/reference/generated/numpy.triu.html|numpy.triu]] creates the upper ({{{u}}}), [[https://docs.scipy.org/doc/numpy/reference/generated/numpy.tril.html|numpy.tril]] the lower ({{{l}}}) triangular matrix from a given matrix. |
Line 94: | Line 306: |
For a sparse matrix, use [[https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.triu.html|scipy.sparse.triu]] and [[https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.tril.html|scipy.sparse.tril]] | For a sparse matrix, use [[https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.triu.html|scipy.sparse.triu]] and [[https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.tril.html|scipy.sparse.tril]]. |
Line 108: | Line 320: |
U: | Uk: |
Line 112: | Line 324: |
S: | Sk: |
Line 114: | Line 326: |
V: | Vk: |
NumPy/SciPy Cheat Sheet
This cheat sheet is a quick reference for NumPy / SciPy beginners and gives an overview about the most important commands and functions of NumPy and SciPy that you might need on solving the exercise sheets about Linear Algebra in Information Retrieval. It doesn't claim to be complete and will be extended continuously. If you think that some important thing is missing or if you find any errors, please let us know.
General
What is NumPy?
What is SciPy?
Matrix construction
Dense matrices
TODO: matrix vs. array
Sparse matrices
Construct a Compressed Sparse Row matrix:
scipy.sparse.csr_matrix(arg, shape=None, dtype=None, copy=False) arg: * A dense matrix; or * Another sparse matrix; or * A tuple (m, n), to construct an empty matrix with shape (n, m); or * A tuple (data, (rows, cols), to construct a matrix A where A[rows[k], cols[k]] = data[k]; or * A tuple (data, indices, indptr)
Examples:
from scipy.sparse import csr_matrix
Accessing elements
TODO (Hannah): crazy element access magic, single elements, entire rows, sub-matrices
Matrix operations
Constant addition
Addition of a constant adds it to every element of the matrix (only for dense matrices)
>>> B_dense = numpy.matrix([[2, 1], [3, 4]], dtype=float) >>> B_dense + 10 matrix([[ 12., 11.], [ 13., 14.]])
Multiplication by a constant
Multiplication by a constant multiplies every element of the matrix by that constant (both for sparse and dense matrices)
>>> A_sparse = csr_matrix([[1, 0], [0, 1], [3, 2]], dtype=float) >>> (A_sparse * 10).todense() matrix([[ 10., 0.], [ 0., 10.], [ 30., 20.]])
Multiplication
* produces the normal matrix multiplication between a csr_matrix (sparse) and a numpy matrix (dense).
* produces the element-wise matrix multiplication for numpy arrays (also dense). In these cases Python broadcasts the operands in case their dimensions mismatch.
matrix.dot() produces the normal matrix multiplication between a csr_matrix and a numpy matrix except in the case of a dense.dot(sparse) matrix multiplication.
The result of a matrix multiplication between:
- a sparse and a sparse matrix is sparse
- a sparse and a dense matrix is dense
- a dense and a dense matrix is dense
https://docs.scipy.org/doc/scipy/reference/sparse.html
http://www.scipy-lectures.org/intro/numpy/operations.html
>>> A_sparse = csr_matrix([[1, 0], [0, 1], [3, 2]], dtype=float) >>> B_dense = numpy.matrix([[2, 1], [3, 4]], dtype=float) >>> A_dense = A_sparse.todense() >>> B_sparse = csr_matrix(B_dense) ## Sparse with sparse >>> C_sparse = A_sparse * B_sparse #(Normal Matrix multiplication, 3x2 matrix with 2x2 matrix) >>> C_sparse.todense() matrix([[ 2., 1.], [ 3., 4.], [ 12., 11.]]) >>> C_sparse = A_sparse.dot(B_sparse) #(Normal Matrix multiplication, 3x2 matrix with 2x2 matrix) >>> C_sparse.todense() matrix([[ 2., 1.], [ 3., 4.], [ 12., 11.]]) ## Sparse with dense >>> C_dense = A_sparse * B_dense #(Normal Matrix multiplication, 3x2 matrix with 2x2 matrix) >>> C_dense matrix([[ 2., 1.], [ 3., 4.], [ 12., 11.]]) >>> C_dense = A_sparse.dot(B_dense) #(Normal Matrix multiplication, 3x2 matrix with 2x2 matrix) >>> C_dense matrix([[ 2., 1.], [ 3., 4.], [ 12., 11.]]) ## Dense with sparse >>> C_dense = A_dense * B_sparse >>> C_dense matrix([[ 2., 1.], [ 3., 4.], [ 12., 11.]]) >>> A_dense.dot(B_sparse) matrix([[ <2x2 sparse matrix of type '<class 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format>, <2x2 sparse matrix of type '<class 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format>], [ <2x2 sparse matrix of type '<class 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format>, <2x2 sparse matrix of type '<class 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format>], [ <2x2 sparse matrix of type '<class 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format>, <2x2 sparse matrix of type '<class 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format>]], dtype=object) ## Dense with dense >>> C_dense = A_dense.dot(B_dense) #(Normal Matrix multiplication, 3x2 matrix with 2x2 matrix) >>> C_dense matrix([[ 2., 1.], [ 3., 4.], [ 12., 11.]]) >>> C_dense = A_dense * B_dense #(Normal Matrix multiplication, 3x2 matrix with 2x2 matrix) >>> C_dense matrix([[ 2., 1.], [ 3., 4.], [ 12., 11.]])
## numpy.ndarray >>> A_ndarray = numpy.array([[1, 0], [0, 1], [3, 2]]) >>> B_ndarray = numpy.array([[2, 1], [3, 4]]) >>> C_ndarray = numpy.array([2, 1]) >>> B_ndarray * B_ndarray #(Element-wise Matrix multiplication, 2x2 matrix with 2x2 matrix) array([[ 4, 1], [ 9, 16]]) >>> B_ndarray.dot(B_ndarray) #(Normal Matrix multiplication, 2x2 matrix with 2x2 matrix) array([[ 7, 6], [18, 19]]) >>> A_ndarray.dot(B_ndarray) #(Normal Matrix multiplication, 3x2 matrix with 2x2 matrix) array([[ 2, 1], [ 3, 4], [12, 11]]) >>> C_ndarray * B_ndarray #(Broadcasting) array([[4, 1], [6, 4]])
TODO (Claudius): Element-wise operations like taking log, sqrt. Multiplying two m*n matrices element-wise (for example, to square the entries in a matrix etc...)
Row- or column-wise operations
TODO (Claudius): summing of rows or columns, sorting rows / columns etc
Useful methods
numpy.round
Takes an array and rounds its values to the given number of decimals. Note that for values exactly halfway between rounded decimal values, Numpy rounds to the nearest even value. numpy.around
>>> numpy.round([1.98, 2.34, 4.76], 1) [ 2. 2.3 4.8]
>>> numpy.round([1.5, 0.5, 3.5, 4.5], 0) [ 2. 0. 4. 4.]
numpy.min
Takes an array and returns its minimum value. If an axis is specified, returns the minimum along the axis. numpy.amin
>>> numpy.min([[5, 0, 1], [4, 3, 2]]) 0
>>> numpy.min([[5, 0, 1], [4, 3, 2]], axis=0) [4 0 1]
numpy.argmin
Takes an array and returns the index of the minimum value of the flattened array. If an axis is specified, returns the indices of the minimum values along the axis. numpy.argmin
>>> numpy.argmin([[5, 0, 1], [4, 3, 2]]) 1
>>> numpy.argmin([[5, 0, 1], [4, 3, 2]], axis=0) [1 0 0]
numpy.argsort
Takes an array a and returns an array of indices that sort a. Optionally, you can specify the axis along which a will be sorted. By default the axis is -1. numpy.argsort
>>> numpy.argsort([[0, 4, 0], [4, 3, 2]], axis=0) [[0 1 0] [1 0 1]]
>>> numpy.argsort([[0, 4, 0], [4, 3, 2]], axis=1) [[0 2 1] [2 1 0]]
numpy.where
Takes a condition and optionally two array-like objects x and y. If x and y are specified, returns an array that contains elements from x where condition is true and elements from y elsewhere. numpy.where
>>> x = numpy.array([[5, 4, 3], [2, 1, 0]]) >>> y = numpy.array([[0, 1, 2], [3, 4, 5]]) >>> numpy.where(x > 3, x, y) [[5 4 2] [3 4 5]]
Special matrices
Diagonal matrix
Matrix (usually square) in which all entries are zero, except on the main diagonal. Use numpy.diag to either create a diagonal matrix from a given main diagonal, or extract the diagonal matrix from a given matrix.
>>> numpy.diag([1,2,3]) array([[1, 0, 0], [0, 2, 0], [0, 0, 3]])
>>> numpy.diag([[1, 5, 4], [7, 2, 4], [4, 7, 3]]) array([1, 2, 3])
For a sparse matrix, use scipy.spare.spdiags.
Identity matrix
Special diagonal m*m matrix where all elements on the main diagonal are 1. Read as the '1' of matrix world. For example, a n*m matrix A multiplied with an m*m identity matrix yields A again. Use numpy.identity(k) to create a k*k identity matrix.
>>> numpy.identity(4) array([[ 1., 0., 0., 0.], [ 0., 1., 0., 0.], [ 0., 0., 1., 0.], [ 0., 0., 0., 1.]])
>>> numpy.array([[1, 2, 3], [3, 4, 3]]).dot(numpy.identity(3)) array([[ 1., 2., 3.], [ 3., 4., 3.]])
For a sparse matrix, use scipy.sparse.identity.
Triangular matrix
A (square) matrix where all elements below (upper triangle) or above (lower triangle) the main diagonal are zero. numpy.triu creates the upper (u), numpy.tril the lower (l) triangular matrix from a given matrix.
>>> numpy.triu([[1, 5, 4], [7, 2, 4], [4, 7, 3]]) array([[1, 5, 4], [0, 2, 4], [0, 0, 3]])
>>> numpy.tril([[1, 5, 4], [7, 2, 4], [4, 7, 3]]) array([[1, 0, 0], [7, 2, 0], [4, 7, 3]])
For a sparse matrix, use scipy.sparse.triu and scipy.sparse.tril.
Matrix decomposition
Singular Value Decompostion (SVD)
Factorize a matrix A (m*n) into three matrices U (m * r), S (r * r) and V (r * n) such that A = U * S * V. Here r is the rank of A.
Use numpy.linalg.svd to do a singular value decomposition for a dense matrix. Use scipy.sparse.linalg.svds for sparse matrices (computes the largest k singular values for a sparse matrix).
>>> Uk, Sk, Vk = svds(csr_matrix([[1, 2, 3], [3, 4, 5], [5, 6, 4]], dtype=float), 2) >>> print("Uk:\n", Uk, "\nSk:\n", Sk, "\nVk:\n", Vk) Uk: [[ 0.56475636 -0.30288472] [ 0.51457155 -0.59799935] [-0.64518709 -0.74206309]] Sk: [ 2.13530566 11.67829513] Vk: [[-0.52332762 -0.32001209 0.78975975] [-0.49726421 -0.63794803 -0.58800563]]