
Chair for Algorithms
and Data Structures

Prof. Dr. Hannah Bast
Marjan Celikik

Search Engines WS 09/10
http://ad.informatik.uni-freiburg.de/teaching

Mid-Term Exam

General instructions:

There are five tasks, of which you can select four tasks of your choice. If you do all five tasks, we
will only count the best four. Each task gives 10 points. You have two full hours of time overall,
that is, 30 minutes per task on average. You need half of the total number of 40 points to pass
the exam. The exact correspondence between the number of points and marks will be decided
when we correct your exams.

You are allowed to use any amount of paper, books, etc. You are not allowed to use any computing
devices or mobile phones, in particular nothing with which you can communicate with others or
connect to the Internet.

This is a pure trial exam, which in no way will influence your final mark. So relax (but not too
much) and ... good luck!

Task 1 (Entropy, 10 points)

Consider the following two random variables. (1) The random variable B with range {0, 1},
where Pr(B = 0) = p and Pr(B = 1) = q, where q = 1 − p. This corresponds to picking a
random bit. (2) The random variable BB with range {00, 01, 10, 11}, where Pr(BB = 00) = p2,
Pr(BB = 01) = Pr(BB = 10) = p · q, and Pr(BB = 11) = q2, where, again, q = 1 − p. This
corresponds to picking two random bits.

1.1 Prove that the sum of the probabilities for B and BB, respectively, are indeed 1. (2 points)

1.2 Derive a formula for the entropy HB of B, and a formula for the entropy HBB of BB. Show
that HBB = 2 ·HB. (3 points)

1.3 Give a prefix-free code for BB, where 00 gets code length 1, 01 and 10 get code length 3, and
11 gets code length 4. (2 points)

1.4 What is the expected code length of a random sequence of n bits encoded with your code
from 1.3, given that p = 3/4. (3 points)

Task 2 (List union and intersection, 10 points)

In this task you are asked to write some code. You can use Java, C++, C#, Python, PHP, or
pseudo-code.

2.1 Let S1 be a set of n integers and let S2 be a set of m integers. What is the largest possible
size (in terms of n and m) of the union of the two sets, and when is that size achieved? What
is the smallest possible size (again, in terms of n and m) of the intersection of the two sets, and
when is that size achieved? (2 points)

2.2 Write a function that given an integer x, and a list L of integers sorted in ascending order,
computes r = |{y ∈ L : y ≤ x}| in O(log r) time. (3 points)

2.3 Consider two lists L1 and L2 of integers sorted in ascending order each. The intersection of
the two lists is empty, if all elements of L1 fall (strictly) between two consecutive elements of L2.
Write a function that checks if this is the case, using your function from 2.2 above. You should also
consider the two border cases that all elements of L1 are smaller than all elements of L2, or that
all elements of L1 are greater than all elements of L2. You don’t have to consider the symmetric
case, where all elements from L2 fall between two consecutive elements of L1. (2 points)

2.4 Assume each list is generated by the following random process: iterate over all elements from
{1, . . . , N} and pick each element with some fixed probability, independent of the other elements.
The N is the same for both lists, but the probability may be different. Now assume that the
expected length of the first list is n and the expected length of the second list is m. Then what
is the expected length of the intersection of the two lists? Prove your claim. (3 points)

Task 3 (k-grams, 10 points)

In the following you are asked to write code. You can use Java, C++, C#, Python, PHP, or
pseudo-code. Throughout this exercise you can assume that all k-grams of a given word are
different, that is, there are no such nasty words as booo (contains the 2-gram oo twice) or banana
(contains the 2-grams an twice and na twice).

3.1 What is the number of k-grams of a word x? Check your formula by two examples. Write a
function that computes, for a given word x, all its k-grams. (2 points)

3.2 Write a function that computes, for two given words x and y and given the number ` of
common k-grams, the Jaccard distance J(x, y) between these two words. (2 points)

Hint: Recall that J(x, y) = |A ∩ B|/|A ∪ B|, where A is the set of k-grams of x and B is the set
of k-grams of y. Also recall that |A ∪B| = |A|+ |B| − |A ∩B|.
3.3 Write a function that, for a given vocabulary of words, computes its k-gram index, that is,
for each k-gram that occurs in at least one of the words, the list / array of all words containing
that k-gram. (3 points)

3.4 Write a function that, for two given words x and y from the vocabulary of 3.3, computes the
k-gram Jaccard distance J(x, y). Use your function from 3.2, and the k-gram index from 3.3. (3
points)

Task 4 (Edit distance, 10 points)

4.1 Compute the edit distance between the two words manner and banana, using the dynamic
programming table. You don’t have to prove that the scheme is correct, you can just use it. (3
points)

4.2 Using your table from 4.1, list all sequences of transformations of minimal length to get from
manner to banana. Recall that a transformation is one of insert / delete / replace + the position
in the current string to which the respective operation is applied. For replace, it also contains the
information about the replacing letter. (3 points)

4.3 Prove that we can always get from a given x to a given y only with insert and delete trans-
formations (that is, disallowing replace transformations). (2 points)

4.4 Give a counterexample that we cannot always get from a given x to a given y, if we di-
sallow insert transformations. Also give a counterexample for the case that we disallow delete
transformations. (2 points)

Task 5 (Ranking, 10 points)

Here is the first verse of an old song by the Beatles:

You say yes, I say no
You say stop and I say go, go, go
Oh, no
You say goodbye and I say hello
Hello, hello
I don’t know why you say goodbye
I say hello
Hello, hello
I don’t know why you say goodbye
I say hello

For this task, consider each of the 10 lines of this verse as one document.

5.1 Write down the inverted lists for the words say, hello, and goodbye. Ignore case, that is,
consider Hello and hello as the same word. (2 points)

5.2 Add standard tf.idf scores to each of the elements of these three inverted lists (tf = frequency
of a term in a document, idf = log2(n/df), where n = number of documents and df = the
number of documents containing a term, tf.idf = simply the product of the two). You may take
log2(10/7) = 0.5 and log2(10/3) = 1.7. (3 points)

5.3 Rank the documents for the query say goodbye according to score sum. When two documents
get the same score sum, the document with the lower id (= line higher up in the verse) gets
ranked before. (2 points)

5.4 Assume that we want only the top-ranked document for the query say goodbye. Execute the
top-k algorithm from Lecture 3, and determine how much of each of the two lists we need to scan
then? (3 points)

