
Chair for Algorithms
and Data Structures

Prof. Dr. Hannah Bast
Marjan Celikik

Search Engines WS 09/10
http://ad.informatik.uni-freiburg.de/teaching

Mid-Term Exam — Solutions

Solution for Task 1 (Entropy)

1.1 For B, the sum of the probabilities is

Pr(B = 0) + Pr(B = 1) = p + q = 1.

For BB, the sum of the probabilities is

Pr(B = 00) + Pr(B = 01) + Pr(B = 10) + Pr(B = 11) = p2 + 2pq + q2 = (p + q)2 = 1,

where the second equality is just the binomial formula.

1.2 Let us write log instead of log2 for better readability. For HB, we have

HB = −p · log p− q · log q.

For HBB, we have

HBB = −p2 · log(p2)− 2pq · log(pq)− q2 · log(q2)

= −2p2 log p− 2pq · log p− 2pq · log q − 2q2 log q

= −2p(p + q) log p− 2q(p + q) log q

= 2 ·HB.

1.3 An example of a prefix-free code with the given code lengths would be

00 → 0

01 → 001

10 → 010

11 → 0111

1.4 The expected code length for a single instance of BB is

3/4 · 3/4 · 1 + 2 · 3/4 · 1/4 · 3 + 1/4 · 1/4 · 4 = (9 + 18 + 4)/16 = 31/16.

For a sequence of length n, we need to generate n/2 such codes (let’s assume that n is even),
hence the expected code length for such a sequence is n/2 · 31/16 = 31/32 · n, which is just a bit
smaller than n.

Solution for Task 2 (List union and intersection)

2.1 When the two sets are disjoint, the union has size n + m and it can’t get any larger than
that. Also, when the two set are disjoint, the intersection has size 0, and it obviously can’t get
any smaller than that.

Several people wrote that the intersection is smallest, when one of the sets is included in the
other, and the minimal size is therefore min{n,m}. This is wrong.

2.2 You have to do an exponential search, followed by a binary search here. Just a binary search
is not good enough, because that will give you time complexity O(log |L|) and not O(log r). Here
is the function in C++:

int rank(int x, const vector<int>& L)

{

// First do an exponential search.

int i = 0;

while (i < L.size() && L[i] <= x) { i = 2 * i + 1; }

// Then do a binary search.

int l = 0;

int r = i < L.size() ? i : L.size();

while (l < r) {

int m = (l + r) / 2;

if (L[m] > x) { r = m - 1; } else { l = m; }

}

assert(l == r);

return r;

}

A common mistake in the binary search was to stop it once we have L[m] == x. That is not
correct, because there might be more elements == x to the right of m and we need to know how
many in order to compute the rank.

2.3 Let `first and `last be the first and last element of L1, respectively. Then all elements of L1 are
strictly inbetween two consecutive elements of L2 (including the border cases) if and only if the
ranks rank(`first, L2) and rank(`last, L2) are equal. This leads to the following simple function:

bool checkIfIntersectionIsEmpty(const vector<int>& L1, const vector<int>& L2)

{

if (L1.size() == 0) return true;

return rank(L1[0], L2) == rank(L1[L1.size() - 1], L2);

}

Note that this function also deals with the border cases correctly. If all elements of L1 are strictly
smaller than all elements of L2, then both ranks will be zero. If all elements of L1 are strictly
larger than all elements of L2, then both ranks will be |L2|.
2.4 The probability that a fixed integer from {1, . . . , N} is present in the first list is n/N , and
for the second list that probability is m/N . Therefore the probability that a fixed integer from
{1, . . . , N} is present in both lists is n/N · m/N . Hence the expected size of the intersection is
N · n/N ·m/N = (n ·m)/N .

Solution for Task 3 (k-grams)

3.1 The number of k-grams of a word x is |x| + k − 1. For example, for the word exam the
4 − 2 + 1 = 3 2-grams are {ex, xa, am}. For the word midterm the 7 − 4 + 1 = 6 5-grams are
{midt, idte, dter, term}. The function is straightforward, here it is in C++:

void computeKgrams(const string& x, int k, vector<string>* kgrams)

{

for (int i = 0; i + k < x.size(); ++i)

kgrams->push_back(x.substr(i, k));

}

3.2 We have that |A∪B| = |A|+ |B|−|A∩B| = |x|+k−1+ |Y |+k−1−` = |x|+ |y|+2k−2+`.
Hence

J(x, y) = `/(|x|+ |y| − 2k + 2 + `.

The function is then straightforward, here it is in C++:

int jaccardDistance(const string& x, const string& y, int k, int l)

{

return l / (x.size() + y.size() - 2*k + 2 + l);

}

3.3 Here is the function in C++. Note that, as already done above, the return type is void and
the result is instead passed as a pointer argument. This is a standard convention that avoids
potentially very expensive copy operations when returning the result (the returned result would
have to be copied from a local variable to the variable of the calling function).

void buildKgramIndex(const vector<string>& vocabulary, int k,

hash_map<string, vector<string> >* index)

{

for (int i = 0; i < vocabulary.size(); ++i)

{

vector<string> kgrams;

const string& word = vocabulary[i];

computeKGrams(word, k, &kgrams);

for (int j = 0; j < kgrams.size(); ++j)

index[kgrams[j]].push_back(word);

}

}

3.4

Here is the function in C++.

int jaccardDistance(const string& x, const string& y,

int k, const hash_map<string, vector<string> >& kgramIndex)

{

vector<string> xKgrams;

computeKgrams(x, k, xKgrams);

int l = 0;

for (int i = 0; i < xKgrams.size(); ++i)

{

const vector<string>& words = kgramIndex[xKgrams[i]];

assert(words.size() > 0);

for (int j = 0; j < words.size(); ++j) if (words[j] == y) ++l;

}

return l;

}

Solution for Task 4 (edit distance)

4.1 Here is the dynamic programming table, filled using the trivial equality that ED(ε, z) =
ED(z, ε) = |z| and the recursion from the lecture. According to the table, the edit distance
between manner and banana is 4.

ε b a n a n a

ε 0 1 2 3 4 5 6

m 1 1
↖

2 3 4 5 6

a 2 2 1
↖

2 3 4 5

n 3 3 2 1
↖

2← 3 4

n 4 4 3 2 2
↖

2
↖

3

e 5 5 4 3 3 3
↑↖

3
↖

r 6 6 5 4 4 4 4
↑↖

4.2 The arrows in the table above show from which previous value a value may be derived in the
recursion. According to these arrows, there are three different optimal paths from the upper left
to the lower right. These paths are:

1. R(1, b), R(4, a), R(5, n), R(6, a)
2. R(1, b), I(3, a), R(6, a), D(7)
3. R(1, b), I(3, a), D(6), R(6, a)

Here R(i, x) means replace the character at position i by x, I(i, x) means insert character x just
after position i, and D(i) means delete the character at position i.

4.3 One way to see this is that each R(i, x) can be replaced by a I(i, x) immediately followed by
a D(i). If there were r replace operations before this increases the number of transformations by
r.

Another way to see this is that we can always get from x to y by first deleting all characters
from x and then inserting all characters from y. This gives a sequence of transformation of length
|x|+ |y|.
4.4 If we disallow insert operations, we can never get from a string x to a string y where |y| > |x|,
since replace operations maintain the length of the string and delete operations only make it
smaller. Therefore any x and y with |y| > |x| are a counterexample.

Similarly, if we disallow delete operations, we can never get from a string x to a string y where
|y| < |x|, since replace operations maintain the length of the string and insert operations only
make it longer. Therefore any x and y with |y| < |x| are a counterexample.

Solution for Task 5 (ranking)

5.1 + 5.2 The inverted lists + scores for the words say, hello, and goodbye are:

say : (1, 1.0), (2, 1.0), (4, 1.0), (6, 0.5), (7, 0.5), (9, 0.5), (10, 0.5)

hello : (4, 1.0), (5, 2.0), (7, 1.0), (8, 2.0), (10, 1.0)

goodbye : (4, 1.7), (6, 1.7), (9, 1.7)

Explanation for the scores: the document frequencies (df) of the three words are 7, 5, and 3, respec-
tively, which gives rise to inverse document frequencies (idf) of log2(10/7) ≈ 0.5, log2(10/5) = 1.0,
and log2(10/3) ≈ 1.7. Mulitplying that with the term frequencies (tf) gives the scores shown abo-
ve.

5.3 Computing the union of the two lists for say and goodbye and aggregating the scores by sum,
we get:

(1, 1.0), (2, 1.0), (4, 2.7), (6, 2.2), (7, 0.5), (9, 2.2), (10, 0.5)

and sorting that by score (with ties broken by doc id), we get the ranking:

(4, 2.7), (6, 2.2), (9, 2.2), (1, 1.0), (2, 1.0), (7, 0.5), (10, 0.5)

5.4 For the top-k algorithm, we first have to sort the two list for say and goodbye by score (which
they happen to already be, if sorted by doc id):

say : (1, 1.0), (2, 1.0), (4, 1.0), (6, 0.5), (7, 0.5), (9, 0.5), (10, 0.5)

goodbye : (4, 1.7), (6, 1.7), (9, 1.7)

Now after the first round of top-k (reading the first pair from each list), we have

(1, [1.0, 2.7]), (4, [1.7, 2.7]), all others: ≤ 2.7

After the second round (having read the first two pairs from each list), we have

(1, [1.0, 2.7]), (4, [1.7, 2.7]), (2, [1.0, 2.7]), (6, [1.7, 2.7]), all others: ≤ 2.7

After the third round we have

(1, [1.0, 2.7]), (4, 2.7), (2, [1.0, 2.7]), (6, [1.7, 2.7]), (9, [1.7, 2.7]), all others: ≤ 2.7

And after the fourth round we have

(1, 1.0), (4, 2.7), (2, 1.0), (6, 2.2), (9, [1.7, 2.2]), all others: ≤ 0.5

Now we know that the top-ranked element can only be 4. If we wanted just anyone top-ranked
document, we would have also stopped after round 3, but then we wouldn’t have known whether
there are other documents, and maybe with a smaller id, achieving a score of 2.7, too.

