Chair for Algorithms and Data Structures
Prof. Dr. Hannah Bast Marjan Celikik

Search Engines WS 09/10

http://ad.informatik.uni-freiburg.de/teaching

Exercise Sheet 10

complete until Thursday, January 21st

Exercise 1

Compute the singular value decomposition of the following 2×3 matrix by hand.

$$
\left(\begin{array}{lll}
3 & 5 & 5 \\
3 & 7 & 1
\end{array}\right)
$$

Exercise 2

Let A_{k} be the the best rank- k approximation of A in the Frobenius norm, as defined in the lecture. Prove that $\left\|A-A_{k}\right\|_{F}^{2}=\sigma_{k+1}^{2}+\cdots+\sigma_{m}^{2}$, where σ_{i} is the i th largest singular value of A, and $m=\operatorname{rank}(A)$. First try to prove this on your own for some time, and then feel free to ask for hints.

Exercise 3

Let A be a symmetric $m \times m$ matrix with m different, positive eigenvalues. The so-called power method starts with a random vector x and repeatedly applies A to it, and then normalizes the result after each step. That is, after k steps, it has computed $x_{k}=A^{k} \cdot x /\left\|A^{k} \cdot x\right\|$. Prove that the power method converges to the eigenvector u_{1} pertaining to the largest eigenvalue λ_{1}, that is, $\lim _{k \rightarrow \infty} x_{k}=u_{1}$.

Hint: Write x as a linear combination of the m eigenvectors u_{1}, \ldots, u_{m} of A. You may assume without further proof that, because x is chosen at random, it is not orthogonal to u_{1}.

Exercise 4

Implement the power method for an arbitrary given symmetric matrix (it's ok to specify the matrix in the code). Don't use a library for matrix-matrix and matrix-vector multiplication but implement it yourself, it's simple. Run the method for a reasonable number of iterations. Check the correctness of your code by applying it to the 2×2 matrix $\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ from the lecture. For that matrix, $u_{1}=(1 / \sqrt{2}, 1 / \sqrt{2})$ with eigenvalue 3 .

