

Exercise 1

In the lecture we have written code for hierarchical clustering using the single-link heuristic that runs in $O\left(n^{3}\right)$ time, where n is the number of points. Modify the code so that it uses the completelink heuristic for merging clusters and so that it runs in $O\left(n^{2} \cdot \log n\right)$ time, using a priority queue as briefly discussed in the lecture. Run your code for $n=10^{1}, 10^{2}, 10^{3}, \ldots$ (go as high as you can on your machine) and output T / n^{2}, where T is the running time. Does T / n^{2} indeed look logarithmic in n, as it should? (Note that for $n=10^{i}, \log n$ grows linearly with i.)

Exercise 2

Modify the code from the lecture so that it runs in $O\left(n^{2}\right)$ time using a so-called NBM-array (NBM $=$ next best merge). The NBM-array stores for each cluster representative ($=$ the smallest index of a point in the cluster) the representative of the cluster with the highest single-link similarity. To update the NBM-array after each iteration, make use of the fact that single-link is best-merge persistent, as discussed in the lecture. Check T / n^{2} analogously to the previous exercise.

Exercise 3

Show by a counterexample that the complete-link heuristic is not best-merge persistent.

Exercise 4

Consider the flat clustering \mathcal{C} that results when stopping a hierarchical clustering of n points after k iterations (that is, we have $n-k$ clusters now). Let s_{k} be the similarity of the last cluster pair merged before we stopped. Let G be the graph with n vertices (one for each point), and with an edge between two vertices if and only if the similarity between the respective points is at least s_{k}. Then prove the following two statements. (1) If the merging heuristic was single-link, the clusters of \mathcal{C} are exactly the connected components of G. (2) If the merging heuristic was complete-link, the clusters of \mathcal{C} are exactly the maximal cliques of G. You can assume that the similarities between all pairs of points are different.

