Search Engines
WS 2009 / 2010

Lecture 1, Thursday October 22", 2009

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg



Overview of this Lecture

m Introduction

— a bit about myself

— the kind of work we do in our group

— teaching style, project after the course ends
m Search

— parsing

— building an inverted index

— querying an inverted index

— a simple space and time analysis
m Exercises

— go over Exercise Sheet 1, explain course Wiki



About myself

m Education

— Ph.D. at Saarland University, 1999
— researcher (W2) at the MPI for Informatics, Saarbrlicken

— researcher (W2) at MMCI Cluster of Excellence, Saarbriicken
— professor (W3) in Freiburg since September 2009

m Real work

— worked at Siemens a long time ago

— consulted for many (search engine) companies
— worked at Google Zlrich for the last 1 2 years

m Research interests
— I do and like what I call Applied Algorithmics




CompleteSearch Demo

m Developed by our group since 2005 public demos

m Show + explain the following

— smart + complex searches, but still very fast comparison

— show variety of collections / applications
— user interface, show JavaScript source

— TCP traffic, show via FireBug / CS Infobox
— web server (Apache), show access log

— middleware code (PHP), show access log
— backend, show server log for DBLP

— CompleteSearch code, and the algorithms behind

You will learn about all of this in this lecture !



Web Search vs. Domain-Specific Search

m Web Search

— ranking is extremely important

— recall is not an issue for popular queries and hopeless for
many expert queries

— Spam, spam, Sspam, spam, spam, spam, spam, spam, ...
— very limited resources for fancy stuff
m Domain-Specific Search

— recall is important example

— Spam is not an issue

— more resources to do fancy stuff (still has to be fast though)

Google is great on Web Search, we do Domain-Specific Search



Searching by Scanning (grep)

m That’s what a Unix / Linux grep does

m It's not so bad, a modern computer can ...
— ... scan 100 MB from disk per second
— ... scan 1 GB of memory per second

m However grep is line-based

— finds lines that match a given pattern

— but there are extensions which do Google-like search,
for example, agrep



Parsing / Tokenization

m Conceptually simple:
— just break a given text into words / tokens

m But:
- BRIERIOEEECOERIHOMEEMLS)
— ich schwAqJre bei*M meiner MAghre ...

— Donaudampfschifffahrtsgesellschaft

— stemming: for example, search eggs, find egg

for the exercises you can do something simple



The Inverted Index

m Idea
— like the index in the back of a book
— but for *every* word that occurs

m Specifically

— for every word in the collection, a list of the ids of the
documents containing it (called inverted list)

informatik: Docl2, Doc57, Doc59, Doc61, Doc77, ...
m Construction

— it's basically one big sort: parsing outputs the word
occurrences sorted by document and position, for the
inverted index we need it sorted by word show example



Index Construction = Sorting

Docl Doc2

What a stupid Another stupid

document. document.
what 1 a 1
a 1 another 2
stupid 1 sorting document 1
document 1 — document 2
another 2 stupid 1
stupid 2 stupid 2
document 2 what 1



Alternatively, use Hashing

m Have a hash map words - list of doc ids

— in C++: hash_map<string, vector<int> >

— whenever you encounter a word for the first time,
insert it into a hash map with an empty list

— append subsequent occurrences to that list

m Complexity, where N = total number of word occurrences
— Sorting takes time O(N - log N)
— Hashing takes constant time per word, hence O(n)
— Still it's not so clear which approach is better, why?
each hash operation is likely to be a cache miss
hashing only works when the index fits in memory
more about this in one of the next lectures



Space Analysis

m Total size of the inverted index?

— one inverted list entry per word occurrence

— but we have an id instead of a full word

— that already gives some kind of compression

— later in the course we will compress even more

— size of an index = 10 — 20% of whole collection



Querying an inverted index

m Example query: informatik freiburg

— fetch the two inverted lists

— intersect them

informatik: Doc 12, Doc14, Doc27, Doc54, Doc 55, ...

freiburg: Doc 5, Doc 12, Doc 13, Doc14, Doc67, ...
intersection - Doc 12, Docl14, ...
m Efficiency

— important that the lists are sorted by doc id
— then cost of intersection = O(log k - sum of list sizes)

— why the log k?



Intersection of multiple lists

m Assume we have three lists

informatik: Doc 12, Doc14, Doc27, Doc54, Doc 55, ...

freiburg: Doc 5, Doc 12, Doc 13, Doc14, Doc67, ...

master: Doc 7, Doc 12, Doc14, Doc 38, Doc 72, ...
m Algorithm:

— for each list maintain the current position in the list, and the
doc id at that position in a priority queue

— at each step, find those of the current positions with the
smallest entry, and advance that position show with lists above

— with a priority queue this operation takes log k time, where k is
the number of items in the queue (here: the number of lists)

— Note: a trivial implementation of a priority queue (always scan
all items to find the smallest element) would take time k



How long are the inverted lists

m Zipf's law:

— The i-th most frequent word in the collection occurs
approximately € - N - 1 /i times, for some constant ¢
and N = total num of word occurrences

— Exercise: verify this for your collection. What is your € ?

m S0 with k query words with ranks ry, ..., 1, :

— the total length of the listsise - N -2 1/,

— let's compute how much this is in expectation ...






