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Overview of Today‘s Lecturey

 Learn about Latent Semantic Indexing (LSI)

– a method that addresses the synonymy problem

– fully automatic, does not require any understanding offully automatic, does not require any understanding of 
the words

– uses method from linear algebra, which you learn on the g , y
way

Eigenvector (Schur) decomposition

Singular Value Decomposition (SVD)
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The Synonymy Problemy y y

 Here is a toy term-document matrix

– it‘s the one from Lecture 3, remember?

Doc1 Doc2 Doc3 Doc4 Doc5

internet 0.9 0 0 0.6 0

Qry

1.0

web 0.3 0.9 0 0.4 0

surfing 0.7 0.6 0 0.8 0.6

0

0

beach 0 0 1.0 0.3 0.7 0

 Problem

– Doc2 not retrieved although the words internet and web are 
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synonymous here and so Doc2 is just as relevant as Doc1



Syonym Dictionaryy y y

 One solution would be a synonym dictionary

– often makes sense, but hard to maintain and keep up-to-date

– in this lecture, we will look at a fully automatic methodin this lecture, we will look at a fully automatic method

– but how can that work?
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The Rank of a Matrix

 Assume our matrix is the product of these two

1 0

1 0

1 1

1 1 0 0.5 0

0 0 1 0.5 1
= [compute product]

0 1

 This is a matrix with column rank 2

– column rank k = all  columns can be written as a linear 
combination of k common "base" columns, but not less

– the row rank is defined analogously
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– Theorem:  column rank = row rank



Perturbing a Low-Rank Matrixg

 Assume we change just two of the entries

1 0 0 0.5 0

1 1 0 0 5 01 1 0 0.5 0

1 1 1 1 0

0 0 1 0 5 10 0 1 0.5 1

 Now the matrix has full rank (4) again Now the matrix has full rank (4) again

– but assuming that it came from a rank-2 matrix with just 
two entries changedg

– it‘s not hard to guess what the original rank-2 matrix was

– LSI does this recovering automatically
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LSI does this recovering automatically



Latent Semantic Indexing (LSI)g ( )

 For a given m x n term-document matrix A

– and for a given rank k, typically << min(m, n)

(note that the maximal rank is min(m, n), why?)(note that the maximal rank is min(m, n), why?)

– LSI computes that rank-k matrix Ak with minimal 
distance to A

– formally:  argminAk, rank(Ak) = k ǁ A – Ak ǁ

– where ǁ . ǁ is the Frobenius normwhere ǁ . ǁ is the Frobenius norm

that is, for a matrix A = [aij]

ǁ A ǁ := sqrt( ∑aij
2 )ǁ A ǁ := sqrt( ∑aij )

How to compute such a low rank approximation?
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How to compute such a low-rank approximation?



Eigenvector (Schur) Decompositiong ( ) p

 Theorem:
– let A be a symmetric m x m matrix

– then A can be written as  U · D · UT

– where U is unitarian, that is, U · UT = UT · U = I

– and D is a diagonal matrix

with the eigenvalues on its diagonal

 Recall
– when A · x = λ · x

– then x is called an eigenvector of A with eigenvalue λ

– if x is an eigenvector then so are all multiples of x

– A has m linear independent eigenvectors

which hence form a basis of the Rm
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Eigenvector Decomposition — Exampleg p p

[do example]
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Singular Value Decomposition (SVD)g p ( )

 Theorem

– Let A be an arbitrary rectangular m x n matrix A

– then A can be written as U · ∑ · VTthen A can be written as  U  ∑  V

– where U is m x k, ∑ is k x k, and V is n x k   k = rank(A)

– and UT · U = I and VT · V = I (but not vice versa)– and U · U = I and V · V = I (but not vice versa)

– and ∑ is a diagonal matrix

with the so called singular values on its diagonalwith the so-called singular values on its diagonal

 Example

– one of the exercises

– do it by hand please (it is doable by hand)
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SVD Examplep

 Let‘s take our slightly perturbed rank-2 matrix

1 0 0 0.5 0

1 1 0 0 5 01 1 0 0.5 0

1 1 1 1 0

0 0 1 0 5 1

=

0 32 0 24 0 90 0 17 2 62 0 0 0 0 60 0 42 0 55 0 03 0 41

0 0 1 0.5 1

-0.32 -0.24 -0.90 -0.17

-0.50 -0.42 0.15 0.74

2.62 0 0 0

0 1.47 0 0

-0.60-0.42-0.55 0.03 -0.41

-0.48-0.25 0.73 0.42 0
· ·-0.75 0.05 0.36 -0.55

-0.29 0.87 -0.20 0.34

0 0 0.70 0

0 0 0 0.45

-0.39 0.63 0.22 -0.48-0.40

-0.50 0.11 -0.16-0.22 0.82
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How to Compute the SVDp

 Easy via the Eigenvector (Schur) decomposition

[do the calculations]

 This is not the most efficient way howevery

– in pratice, use numerical methods

– one of the most efficient ones is called the Lanczos methodone of the most efficient ones is called the Lanczos method

– which has complexity O(k · nz), where k is the rank and nz is 
the number of non-zero values in the matrix
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– note that term-document matrices are sparse:  nz << n · m



Best Rank-k Approximation via SVDpp

 Take the SVD U · ∑ · VT of the given matrix A
– and keep only the first k columns of U

– the upper k x k part of ∑the upper k x k part of ∑

– and the first k rows of VT

h i l f h SVD f lid d k 2– here is an example for the SVD from two slides ago and k = 2

-0.32 -0.24 -0.90 -0.17

-0.50 -0.42 0.15 0.74

2.62 0 0 0

0 1.47 0 0

-0.60-0.42-0.55 0.03 -0.41

-0.48-0.25 0.73 0.42 0.00
· ·-0.75 0.05 0.36 -0.55

-0.29 0.87 -0.20 0.34

0 0 0.70 0

0 0 0 0.45

-0.39 0.63 0.22 -0.48-0.40

-0.50 0.11 -0.16-0.22 0.82

· ·
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Best Rank-k Approximation via SVDpp

 Take the SVD U · ∑ · VT of the given A
– and keep only the first k columns of U

– the upper k x k part of ∑the upper k x k part of ∑

– and the first k rows of VT

h i l f h SVD f lid d k 2– here is an example for the SVD from two slides ago and k = 2

-0.32 -0.24 0 0

-0.50 -0.42 0 0

2.62 0 0 0

0 1.47 0 0

-0.60-0.42-0.55 0.03 -0.41

-0.48-0.25 0.73 0.42 0.00
· ·-0.75 0.05 0 0

-0.29 0.87 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

· ·
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Best Rank-k Approximation via SVDpp

 Take the SVD U · ∑ · VT of the given A
– and keep only the first k columns of U

– the upper k x k part of ∑the upper k x k part of ∑

– and the first k rows of VT

h i l f h SVD f lid d k 2– here is an example for the SVD from two slides ago and k = 2

-0.32 -0.24

-0.50 -0.42 2.62 0 -0.60 -0.42 -0.55 0.03 -0.41· ·-0.75 0.05

-0.29 0.87

0 1.47 -0.48 -0.25 0.73 0.42 0.00· ·
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Best Rank-k Approximation via SVDpp

 Take the SVD U · ∑ · VT of the given A
– and keep only the first k columns of U

– the upper k x k part of ∑the upper k x k part of ∑

– and the first k rows of VT

h i l f h SVD f lid d k 2– here is an example for the SVD from two slides ago and k = 2

0 7 0 4 0 2 0 4 0 21 0 0 0 5 0 0.7 0.4 0.2 0.4 0.2

1.0 0.7 0.3 0.4 0.2

1 1 0 8 1 1 0 8 0 7

1 0 0 0.5 0

1 1 0 0.5 0

1 1 1 1 0 1.1 0.8 1.1 0.8 0.7

-0.1 0.0 1.3 0.5 0.8

1 1 1 1 0

0 0 1 0.5 1
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our original A rank-2 approximation



Problems with LSI

 The approximation is good ...

– ... but the vectors of the decomposition are not intuitive

– explain by example on previous slidesexplain by example on previous slides

 Alternatives

PLSI b bili ti LSI– PLSI = probabilistic LSI

find column-stochastic matrices (entries non-negative,
column sum = 1) U and V such that A = U ∑ VTcolumn sum = 1) U and V such that A = U · ∑ · VT

– NMF = non-negative matrix factorization

fi d ti t i U d V h th t A U Vfind any non-negative matrices U and V such that A = U · V

– Quality of LSI, PLSI, NMF is about the same, but the matrices U
and V have a more natural interpretation for PLSI and NMFand V have a more natural interpretation for PLSI and NMF
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Practical Issues

 In practice

– m (#terms) and n (#documents) are very large

– decomposition on such large matrices is very expensivedecomposition on such large matrices is very expensive

– also, the concepts found are based on mere co-occurrence

correlations found are not always what one wouldcorrelations found are not always what one would 
expect

many correlations are not found because there is nomany correlations are not found because there is no 
strong signal in the data

here is a demo
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