Search Engines WS 2009 / 2010

Lecture 10, Thursday January 14th, 2010 (Latent Semantic Indexing)

> Prof. Dr. Hannah Bast Chair of Algorithms and Data Structures Department of Computer Science University of Freiburg

REIBURG

Overview of Today's Lecture

FREIBURG

- Learn about Latent Semantic Indexing (LSI)
 - a method that addresses the synonymy problem
 - fully automatic, does not require any understanding of the words
 - uses method from linear algebra, which you learn on the way
 - Eigenvector (Schur) decomposition
 - Singular Value Decomposition (SVD)

The Synonymy Problem

Here is a toy term-document matrix

- it's the one from Lecture 3, remember?

	Doc1	Doc2	Doc3	Doc4	Doc5
internet	0.9	0	0	0.6	0
web	0.3	0.9	0	0.4	0
surfing	0.7	0.6	0	0.8	0.6
beach	0	0	1.0	0.3	0.7

Problem

 Doc2 not retrieved although the words internet and web are synonymous here and so Doc2 is just as relevant as Doc1

ZZ

One solution would be a synonym dictionary

- often makes sense, but hard to maintain and keep up-to-date
- in this lecture, we will look at a fully automatic method
- but how can that work?

- This is a matrix with column rank 2
 - column rank k = all columns can be written as a linear combination of k common "base" columns, but not less
 - the row rank is defined analogously
 - Theorem: column rank = row rank

Assume we change just two of the entries

1	0	0	0.5	0
1	1	0	0.5	0
1	1	1	1	0
0	0	1	0.5	1

- Now the matrix has full rank (4) again
 - but assuming that it came from a rank-2 matrix with just two entries changed
 - it's not hard to guess what the original rank-2 matrix was
 - LSI does this recovering automatically

Latent Semantic Indexing (LSI)

For a given m x n term-document matrix A

– and for a given rank k, typically << min(m, n)</p>

(note that the maximal rank is min(m, n), why?)

- LSI computes that rank-k matrix ${\sf A}_{\sf k}$ with minimal distance to ${\sf A}$
- formally: $\operatorname{argmin}_{A_{k'}} \operatorname{rank}(A_k) = k \| A A_k \|$
- where $\|$. $\|$ is the Frobenius norm
 - that is, for a matrix $A = [a_{ij}]$
 - $|| A || := sqrt(\Sigma a_{ij}^2)$

How to compute such a low-rank approximation?

Eigenvector (Schur) Decomposition

Theorem:

- let A be a symmetric m x m matrix
- then A can be written as $U \cdot D \cdot U^T$
- where U is unitarian, that is, $U \cdot U^T = U^T \cdot U = I$
- and ${\sf D}$ is a diagonal matrix
 - with the eigenvalues on its diagonal
- Recall
 - when $\mathbf{A} \cdot \mathbf{x} = \mathbf{\lambda} \cdot \mathbf{x}$
 - then x is called an eigenvector of A with eigenvalue λ
 - if x is an eigenvector then so are all multiples of x
 - A has m linear independent eigenvectors which hence form a basis of the R^m

Eigenvector Decomposition - Example

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \qquad A \cdot x = \beta \cdot x \\ A \cdot x - \beta \cdot x = 0 \\ (A - \beta \cdot 1) \cdot x = 0 \\ (A - \beta \cdot 1) \cdot x = 0 \\ (A - \beta \cdot 1) \cdot x = 0 \\ A - \beta \cdot 1 = 0 \\ A - \beta \cdot 1$$

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} EV1 : \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ with vol 3}$$

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} EV2 : \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ with vol 4}$$

$$Monolize : \begin{pmatrix} 1 \\ 1 \end{pmatrix} \Longrightarrow \bigvee_{2^{-1}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} -1 \\ -1 \end{pmatrix} \Longrightarrow \bigvee_{2^{-1}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$U = \frac{1}{\tau_{2^{-1}}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad U^{-1} = \frac{1}{\tau_{2^{-1}}} \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$

$$Sluv decamposition:$$

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = \frac{1}{\tau_{2^{-1}}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \underbrace{\tau_{2^{-1}}}_{2^{-1}}$$

$$U = \frac{1}{\tau_{2^{-1}}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \underbrace{\tau_{2^{-1}}}_{2^{-1}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \underbrace{\tau_{2^{-1}}}_{2^{-1}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \underbrace{\tau_{2^{-1}}}_{2^{-1}} \underbrace{\tau_{2^{-1}}}_{2^{-1}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \underbrace{\tau_{2^{-1}}}_{2^{-1}} \underbrace{\tau_{2^{-1}}}_{2^{-1}$$

Singular Value Decomposition (SVD)

Theorem

- Let A be an arbitrary rectangular m x n matrix A
- then A can be written as $U \cdot \Sigma \cdot V^T$
- where U is m x k, Σ is k x k, and V is n x k k = rank(A)
- and $U^{\mathsf{T}} \cdot U = I$ and $V^{\mathsf{T}} \cdot V = I$ (but not vice versa)
- and Σ is a diagonal matrix
 - with the so-called singular values on its diagonal

Example

- one of the exercises
- do it by hand please (it is doable by hand)

REI

Let's take our slightly perturbed rank-2 matrix

1	0	0	0.5	0	
1	1	0	0.5	0	
1	1	1	1	0	
0	0	1	0.5	1	

-0.32	-0.24	-0.90	-0.17
-0.50	-0.42	0.15	0.74
-0.75	0.05	0.36	-0.55
-0.29	0.87	-0.20	0.34

	2.62	0	0	0
_	0	1.47	0	0
	0	0	0.70	0
	0	0	0	0.45

-0.60	-0.42	-0.55	0.03	-0.41
-0.48	-0.25	0.73	0.42	0
-0.39	0.63	0.22	-0.48	-0.40
-0.50	0.11	-0.16	-0.22	0.82

VT

=

U

Σ

UNI FREIBURG

- This is not the most efficient way however
 - in pratice, use numerical methods
 - one of the most efficient ones is called the Lanczos method
 - which has complexity $O(k \cdot nz)$, where k is the rank and nz is the number of non-zero values in the matrix
 - note that term-document matrices are sparse: $nz \ll n \cdot m$

Take the SVD $U \cdot \Sigma \cdot V^T$ of the given matrix A

- and keep only the first ${\bf k}$ columns of ${\bf U}$
- the upper k x k part of Σ
- and the first k rows of V^T
- here is an example for the SVD from two slides ago and k = 2

-0.32	-0.24	-0.90	-0.17
-0.50	-0.42	0.15	0.74
-0.75	0.05	0.36	-0.55
-0.29	0.87	-0.20	0.34

2.62	0	0	0
0	1.47	0	0
0	0	0.70	0
0	0	0	0.45

-0.60	-0.42	-0.55	0.03	-0.41
-0.48	-0.25	0.73	0.42	0.00
-0.39	0.63	0.22	-0.48	-0.40
-0.50	0.11	-0.16	-0.22	0.82

RE .

Take the SVD $U \cdot \Sigma \cdot V^T$ of the given A

- and keep only the first k columns of U
- the upper k x k part of Σ
- and the first k rows of V^T
- here is an example for the SVD from two slides ago and k = 2

-0.32	-0.24	0	0
-0.50	-0.42	0	0
-0.75	0.05	0	0
-0.29	0.87	0	0

2.62	0	0	0
0	1.47	0	0
0	0	0	0
0	0	0	0

-0.60	-0.42	-0.55	0.03	-0.41
-0.48	-0.25	0.73	0.42	0.00
0	0	0	0	0
0	0	0	0	0

• Take the SVD $U \cdot \Sigma \cdot V^T$ of the given A

- and keep only the first k columns of U
- the upper k x k part of Σ
- and the first k rows of V^T

– here is an example for the SVD from two slides ago and k = 2

• Take the SVD $U \cdot \Sigma \cdot V^T$ of the given A

- and keep only the first ${\bf k}$ columns of ${\bf U}$
- the upper k x k part of Σ
- and the first k rows of V^T

– here is an example for the SVD from two slides ago and k = 2

1	0	0	0.5	0
1	1	0	0.5	0
1	1	1	1	0
0	0	1	0.5	1

our original A

0.7	0.4	0.2	0.4	0.2
1.0	0.7	0.3	0.4	0.2
1.1	0.8	1.1	0.8	0.7
-0.1	0.0	1.3	0.5	0.8

rank-2 approximation

The approximation is good ...

- ... but the vectors of the decomposition are not intuitive
- explain by example on previous slides

Alternatives

- PLSI = probabilistic LSI
 - find column-stochastic matrices (entries non-negative, column sum = 1) U and V such that $A = U \cdot \Sigma \cdot V^T$
- NMF = non-negative matrix factorization
 - find any non-negative matrices U and V such that $A = U \cdot V$
- Quality of LSI, PLSI, NMF is about the same, but the matrices U and V have a more natural interpretation for PLSI and NMF

H

Practical Issues

In practice

- m (#terms) and n (#documents) are very large
- decomposition on such large matrices is very expensive
- also, the concepts found are based on mere co-occurrence
 - correlations found are not always what one would expect
 - many correlations are not found because there is no strong signal in the data
 - here is a demo

- Latent Semantic Indexing (LSI)
 - Deerwester, Dumais, Landauer, Furnas, Harshman
 - Indexing by Latent Semantic Analysis, JASIS 41(6), 1990
 - Bast, Majumdar
 - Why Spectral Retrieval Works, SIGIR 2005
- Alternative methods
 - Thomas Hofmann

Probabilistic Latent Semantic Indexing, SIGIR 1999

- Daniel Lee, Sebastian Seung

Algorithms for Non-negative Matrix Factorization, NIPS 2000

Literature 2

UNI FREIBURG

Eigenvalue decomposition, SVD

- http://en.wikipedia.org/wiki/Schur_decomposition
- http://en.wikipedia.org/wiki/Singular_value_decomposition