Search Engines WS 2009 / 2010

Lecture 10, Thursday January 14th, 2010

 (Latent Semantic Indexing)Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Overview of Today’s Lecture

- Learn about Latent Semantic Indexing (LSI)
- a method that addresses the synonymy problem
- fully automatic, does not require any understanding of the words
- uses method from linear algebra, which you learn on the way
- Eigenvector (Schur) decomposition
- Singular Value Decomposition (SVD)

The Synonymy Problem

■ Here is a toy term-document matrix

- it's the one from Lecture 3, remember?

	Doc1	Doc2	Doc3	Doc4	Doc5
internet	0.9	0	0	0.6	0
web	0.3	0.9	0	0.4	0
surfing	0.7	0.6	0	0.8	0.6
beach	0	0	1.0	0.3	0.7

Qry
1.0
0
0
0

- Problem
- Doc2 not retrieved although the words internet and web are synonymous here and so Doc2 is just as relevant as Doc1

Syonym Dictionary

- One solution would be a synonym dictionary
- often makes sense, but hard to maintain and keep up-to-date
- in this lecture, we will look at a fully automatic method
- but how can that work?

The Rank of a Matrix

- Assume our matrix is the product of these two

4×2	
1	0
1	0
1	1
0	1

1	1	0	0.5	0						
0	0	1	0.5	1	$=$	1	1	0	0.5	0
:---	:---	:---	:---	:---						
1	1	0	0	-5						
1 compute producti]	0									
1	1	1	1	1						
0	0	1	0.5	1						

- This is a matrix with column rank 2
- column rank $k=$ all columns can be written as a linear combination of k common "base" columns, but not less
- the row rank is defined analogously
- Theorem: column rank = row rank

Perturbing a Low-Rank Matrix

- Assume we change just two of the entries

1	0	0	0.5	0
1	1	0	0.5	0
1	1	1	1	0
0	0	1	0.5	1

- Now the matrix has full rank (4) again
- but assuming that it came from a rank-2 matrix with just two entries changed
- it's not hard to guess what the original rank-2 matrix was
- LSI does this recovering automatically

Latent Semantic Indexing (LSI)

- For a given m x n term-document matrix A
- and for a given rank k, typically $\ll \min (m, n)$
(note that the maximal rank is $\min (m, n)$, why?)
- LSI computes that rank-k matrix A_{k} with minimal distance to A
- formally: $\operatorname{argmin}_{A_{k}, \operatorname{rank}\left(A_{k}\right)}=k\left\|A-A_{k}\right\|$
- where $\|$.$\| is the Frobenius norm$
- that is, for a matrix $A=\left[a_{i j}\right]$
- \|A || := $\operatorname{sqrt}\left(\sum \mathrm{a}_{\mathrm{ij}}{ }^{2}\right)$

How to compute such a low-rank approximation?

Eigenvector (Schur) Decomposition

- Theorem:
- let A be a symmetric $m \times m$ matrix
- then A can be written as $U \cdot D \cdot U^{\top}$
- where U is unitarian, that is, $U \cdot U^{\top}=U^{\top} \cdot U=I$
- and D is a diagonal matrix
- with the eigenvalues on its diagonal
- Recall
- when $A \cdot x=\lambda \cdot x$
- then x is called an eigenvector of A with eigenvalue λ
- if x is an eigenvector then so are all multiples of x
- A has m linear independent eigenvectors which hence form a basis of the R^{m}

Eigenvector Decomposition - Example

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

$$
\begin{aligned}
& A \cdot x=\lambda \cdot x \\
& A \cdot x-\lambda \cdot x=0
\end{aligned}
$$

$$
\left(A-7 \cdot I_{0}\right) \cdot x=0 \quad x \neq 0
$$

First, we need the eigenvalues

$$
|A-\lambda \cdot I|=0 \quad\left|\begin{array}{cc}
2-\lambda & 1 \\
\text { [do example] } & 2-\lambda
\end{array}\right|=(2-\lambda)^{2}-1
$$

Eigenvalue (EV) 3

$$
=\lambda^{2}-4 \lambda+3
$$

$$
\begin{aligned}
&\left(\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=0 \Rightarrow(\lambda-3)(\lambda-1) \\
& \text { Eigenvalue 1: }
\end{aligned}
$$

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=0 \Rightarrow x_{1}=-x_{2} \Rightarrow<\binom{1}{-1}>
$$

$2 \lambda d$ Eugur ${ }^{9}$

$$
\left.A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \quad \text { EV1: } \quad \begin{array}{l}
1 \\
1
\end{array}\right) \text { intr val } 3 \text { 汭 } \quad\binom{1}{1} \text { intr val } 1
$$

namolize: $\binom{1}{1} \Rightarrow 1 / \sqrt{2}\binom{1}{1}$ mi L_{2}-mam

$$
\binom{1}{-1} \Rightarrow \frac{1}{\sqrt{2}}\binom{1}{-1}
$$

$$
u=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \quad, \quad U^{\top}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Solur decarposution:

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \frac{1}{\sqrt{2}}
$$

Singular Value Decomposition (SVD)

- Theorem
- Let A be an arbitrary rectangular $\mathrm{m} \times \mathrm{n}$ matrix A
- then A can be written as $U \cdot \Sigma \cdot V^{\top}$
- where U is $m \times k, \sum$ is $k x k$, and V is $n x k \quad k=\operatorname{rank}(A)$
- and $U^{\top} \cdot U=I$ and $V^{\top} \cdot V=I$ (but not vice versa)
- and Σ is a diagonal matrix
- with the so-called singular values on its diagonal

■ Example

- one of the exercises
- do it by hand please (it is doable by hand)

SVD Example

- Let's take our slightly perturbed rank-2 matrix

1	0	0	0.5	0
1	1	0	0.5	0
1	1	1	1	0
0	0	1	0.5	1

-0.32	-0.24	-0.90	-0.17
-0.50	-0.42	0.15	0.74
-0.75	0.05	0.36	-0.55
-0.29	0.87	-0.20	0.34

U

\cdot| 2.62 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: |
| 0 | 1.47 | 0 | 0 |
| 0 | 0 | 0.70 | 0 |
| 0 | 0 | 0 | 0.45 |

Σ
V^{\top}

How to Compute the SVD
Easy via the Eigenvector (Schur) decomposition
Amen $A=U \cdot \Sigma \cdot V^{\top}, U^{\top} U=I \quad V^{\top} V=I$ $A^{+} \mathrm{nxm}$

$$
\begin{aligned}
& \underset{m \times m}{A A^{\top}}=U \cdot \Sigma \cdot \underset{\text { ido the }}{V^{\top} \cdot \sum_{A} \cdot U^{\top}}=U \cdot \Sigma^{2} \cdot U^{\top} \\
& A^{\top} A=v \cdot \varepsilon \cdot u^{\dot{\top} \top} \cdot u \cdot \varepsilon \cdot v^{\top}=v \cdot \varepsilon^{2} \cdot V^{\top} \\
& m \times m
\end{aligned}
$$

- This is not the most efficient way however
- in pratice, use numerical methods
- one of the most efficient ones is called the Lanczos method
- which has complexity $\mathrm{O}(\mathrm{k} \cdot \mathrm{nz})$, where k is the rank and nz is the number of non-zero values in the matrix
- note that term-document matrices are sparse: $n z \ll n \cdot m$

Best Rank-k Approximation via SVD

- Take the SVD $U \cdot \Sigma \cdot V^{\top}$ of the given matrix A
- and keep only the first k columns of U
- the upper $k \times k$ part of Σ
- and the first k rows of V^{\top}
- here is an example for the SVD from two slides ago and $k=2$

-0.32	-0.24	-0.90	-0.17
-0.50	-0.42	0.15	0.74
-0.75	0.05	0.36	-0.55
-0.29	0.87	-0.20	0.34

- | 2.62 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: |
| 0 | 1.47 | 0 | 0 |
| 0 | 0 | 0.70 | 0 |
| 0 | 0 | 0 | 0.45 |
- | -0.60 | -0.42 | -0.55 | 0.03 | -0.41 |
| :---: | :---: | :---: | :---: | :---: |
| -0.48 | -0.25 | 0.73 | 0.42 | 0.00 |
| -0.39 | 0.63 | 0.22 | -0.48 | -0.40 |
| -0.50 | 0.11 | -0.16 | -0.22 | 0.82 |

Best Rank-k Approximation via SVD

- Take the SVD $\mathrm{U} \cdot \Sigma \cdot \mathrm{V}^{\top}$ of the given A
- and keep only the first k columns of U
- the upper $k x k$ part of Σ
- and the first k rows of V^{\top}
- here is an example for the SVD from two slides ago and $k=2$

-0.32	-0.24	0	0
-0.50	-0.42	0	0
-0.75	0.05	0	0
-0.29	0.87	0	0

- | 2.62 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: |
| 0 | 1.47 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
- | -0.60 | -0.42 | -0.55 | 0.03 | -0.41 |
| :---: | :---: | :---: | :---: | :---: |
| -0.48 | -0.25 | 0.73 | 0.42 | 0.00 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

Best Rank-k Approximation via SVD

- Take the SVD $\mathrm{U} \cdot \Sigma \cdot \mathrm{V}^{\top}$ of the given A
- and keep only the first k columns of U
- the upper $k \times k$ part of Σ
- and the first k rows of V^{\top}
- here is an example for the SVD from two slides ago and $k=2$

-0.32	-0.24						
-0.50	-0.42						
-0.75	0.05						
-0.29	0.87	\cdot	2.62	0			
:---:	:---:						
0	1.47	\cdot	-0.60	-0.42	-0.55	0.03	-0.41
:---:	:---:	:---:	:---:	:---:			
-0.48	-0.25	0.73	0.42	0.00			

Best Rank-k Approximation via SVD

- Take the SVD $\mathrm{U} \cdot \Sigma \cdot \mathrm{V}^{\top}$ of the given A
- and keep only the first k columns of U
- the upper $k x k$ part of Σ
- and the first k rows of V^{\top}
- here is an example for the SVD from two slides ago and $k=2$

1	0	0	0.5	0
1	1	0	0.5	0
1	1	1	1	0
0	0	1	0.5	1

our original A

0.7	0.4	0.2	0.4	0.2
1.0	0.7	0.3	0.4	0.2
1.1	0.8	1.1	0.8	0.7
-0.1	0.0	1.3	0.5	0.8

rank-2 approximation

Problems with LSI

- The approximation is good ...
- ... but the vectors of the decomposition are not intuitive
- explain by example on previous slides
- Alternatives
- PLSI = probabilistic LSI
- find column-stochastic matrices (entries non-negative, column sum $=1$) U and V such that $A=U \cdot \Sigma \cdot V^{\top}$
- NMF = non-negative matrix factorization
- find any non-negative matrices U and V such that $A=U \cdot V$
- Quality of LSI, PLSI, NMF is about the same, but the matrices U and V have a more natural interpretation for PLSI and NMF

Practical Issues

- In practice
- m (\#terms) and n (\#documents) are very large
- decomposition on such large matrices is very expensive
- also, the concepts found are based on mere co-occurrence
- correlations found are not always what one would expect
- many correlations are not found because there is no strong signal in the data
- here is a demo

Literature

- Latent Semantic Indexing (LSI)
- Deerwester, Dumais, Landauer, Furnas, Harshman Indexing by Latent Semantic Analysis, JASIS 41(6), 1990
- Bast, Majumdar

Why Spectral Retrieval Works, SIGIR 2005

- Alternative methods
- Thomas Hofmann

Probabilistic Latent Semantic Indexing, SIGIR 1999

- Daniel Lee, Sebastian Seung

Algorithms for Non-negative Matrix Factorization, NIPS 2000

Literature 2

■ Eigenvalue decomposition, SVD

- http://en.wikipedia.org/wiki/Schur_decomposition
- http://en.wikipedia.org/wiki/Singular_value_decomposition

