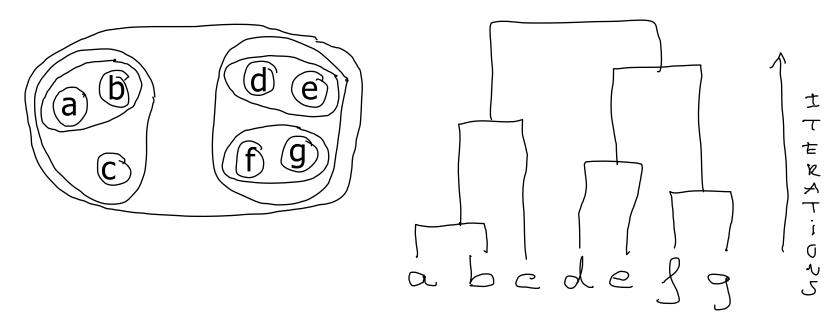
Search Engines WS 2009 / 2010

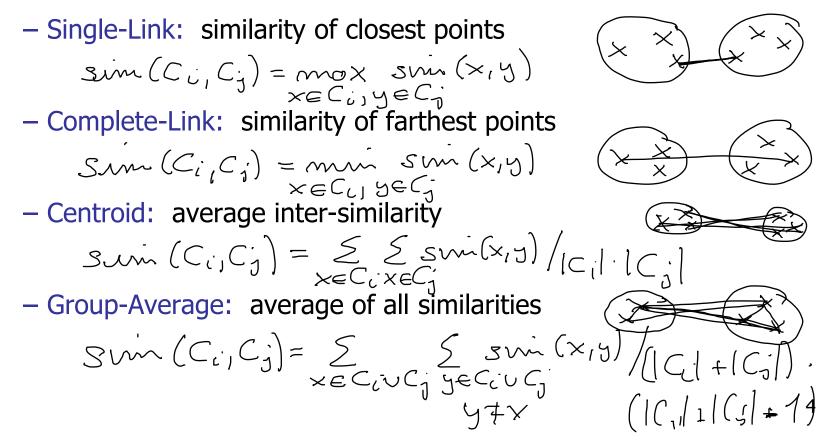
Lecture 13, Thursday February 4th, 2010 (Hierarchical Clustering)

> Prof. Dr. Hannah Bast Chair of Algorithms and Data Structures Department of Computer Science University of Freiburg


REIBURG

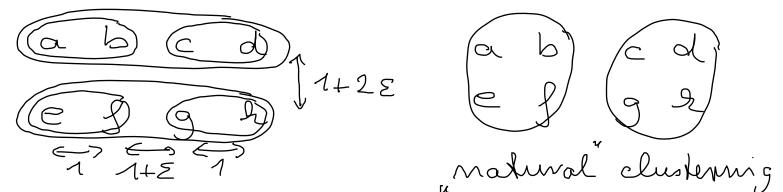
Overview of Today's Lecture

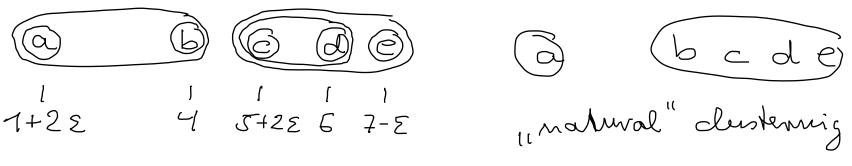
- Learn about Hierarchical Clustering
 - what it is
 - how it compares to "flat" clustering (like k-means)
 - was planned for last lecture
 - but due to the usual technical problems we dropped it
 - enough material for a whole own lecture though


General bottom-up idea:

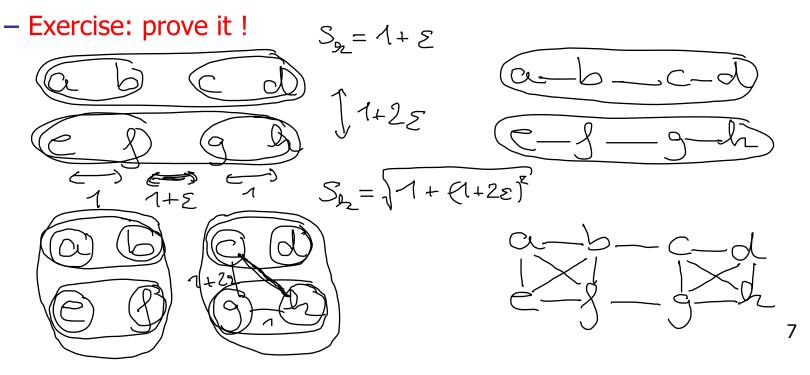
- start with clustering, where each point is its own cluster
- iteratively merge the two clusters that are "most similar"
- natural visualization of hierarchy as a dendrogram

Which Clusters To Merge


- Similarity measure between clusters sim(C_i, C_i)
 - in each step merge C_i and C_j with largest $sim(C_i, C_j)$
- Four common similarity measures



Single-Link and Complete-Link


- Single-Link Problem
 - only the closest pair counts \rightarrow tendency to straggly clusters

- Complete-Link Problem
 - high sensitivity to outliers, even to single one

- Graph-theoretic interpretation
 - let $s_k = sim(C_i, C_j)$ in k-th merging step
 - let G_k be the graph with an edge between all points with $s \ge s_k$
 - then single-link clusters = connected components of G_k
 - and complete-link clusters = maximal cliques of G_k

- Again, code live in a VNC session
 - again with points = numbers
 - pay attention, you will need this for the exercises

220

N.

Hierarchical Clustering — Time Complexity

Naive algorithm

- for full hierarchy, time complexity is $O(n^3)$
- if we proceed for k iterations, still $O(k \cdot n^2)$
- n^2 is prohibitive for large data (think of n = 1 million)
- Improvement
 - using a priority queue we can achieve $O(k \cdot n \cdot \log n)$
 - Exercise: implement for complete-link
 - this is ok; recall that k-means needs $O(I \cdot k \cdot n)$

ZW

Hierarchical Clustering — Time Compl. 2

Further improvement

- for single-link we can even achieve $O(k \cdot n)$
 - that is, each iteration in linear time
- because single-link is best-merge persistent
 - let C_i be the most similar cluster for C_k
 - assume C_i gets merged with $C_i \neq C_k$
 - after that C_i u C_i is the most similar cluster for C_k
- Exercise: implement single link using NBM-array
 - NBM = next best merge
- Exercise: show that complete-link is not best-merge persistent

- What is the cost of the similarity computations?
 - for single-link and complete-link we have to compute the n² similarities of all point pairs only once at the beginning
 - for group-average hierarchical clustering, efficient for cosine similarity (we need: distributivity of + and \cdot)

Reine Lust

BURG

- Sel

References

Already given in slides from last lecture

The Wikipedia articles is ok

http://en.wikipedia.org/wiki/Hierarchical clustering

- Here is the textbook which I also consulted

Introduction to Information Retrieval

BURG

NNI Rell