Search Engines
WS 2009 / 2010

Lecture 2, Thursday October 29t, 2009
(Socket Communication, TCP/IP, HTTP, etc.)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Rules for the Exercises

m Exercises are the most important part of this course
— you may skip the lecture if you feel you don't need it
— you may skip the tutorials if you feel you don't need it
— but you absolutely must to the exercises

m You can't work in groups

— must do everything by yourself, otherwise you don't learn it

— if you cheat / copy, you are out, so don't do it!

i Al

— in the project after the lecture you can work in groups!

m Marks

— one point per exercise, you will get a mark in the end
— the exercise mark is 40% of your final mark, that’s a lot

The code you write ...

m ... should satisfy certain standards

— at least minimally documented
» a description at the beginning what the program does
» a description of every class and every function
— following some style guidelines, and do it consistently
» see NoNos on next slide
— think about naming of variables, classes, etc.
— your code should always come with a README file that says
» exactly how you compiled your program
exactly how you ran your program
» describe any additional tools that you used

you Wwill get less points if you don't care about this

Coding NoNos (a selection)

m Inconsistent spacing
if (flag ==true){ x=x +2 ; flag= false;}
m Inconsistent indentation
— on same level always use, say, 2 spaces (never use tabs!)
— place your { ... } consistently
m Meaningless or incomprehensible names
class MyClass;
int stack = 3;
char* mstrfgy_W;
m Overlong methods

— not more than, say, one screen per method

Oh yes, and for the other write-up ...

m ... please also maintain a certain standard

— proof-read before you submit

— running a spell-checker is an absolute must
» make it a habit!

— whenever you do something you have to argue ...
» ... how you have done it

and whv voir did it the wav vniir did it
«x CITINA \J WAINA U UL I\ (@ | \J GAINA U

/.

» €.79., You can't just write: my € is 0.06
— the exercises are deliberately somewhat underspecified

whenever something is unclear, ask!

Goals for Lecture 2

m Search with a client and a server

— in Lecture 1 / Exercise Sheet 1, you have learned how to
build a (very simple) standalone search engine

— in Lecture 2 / Exercise Sheet 2, learn how to build a
browser-based search engine

client, server, and communication between the two

m Network communication

— an important ingredient of every search engine
— learn what is involved

— and what makes it fast / slow

Overview of Lecture 2

m Socket Communication
— basic principles
— basic code

m TCP / IP

— what is involved
— how fast / slow

m HTTP

— basic protocol
— request types: GET, POST, etc.

m HTML
— basic principle
— forms, input, submit

Socket Communication

m First, some terminology

— Process: program with its own resources (i.p. memory)
running on your computer

— How do processes communicate with each other?

— Socket: communication point, like one end of a telephone line.
— For us here Socket = IP address + Port.

— IP address: the telephone number of your computer

— Port: like a sub-telephone number

= Communication is two-way

— both ends need a Socket = IP address + host

(both sockets may be on the same computer though, e.g. for
local inter-process communication)

Socket communication — Server Code

m Here is how server code looks like in C++ (simplified!)

server_fd = socket(AF_INET, SOCK_STREAM, 0)
server_address.sin_family = AF_INET;
server_address.sin_addr.s_addr = INADDR_ANY;
server_address.sin_port = htons(80);
bind(server_fd, &server_address);
listen(server_fd, 5)

client_fd = accept(server_fd, &client_address);
read(client_fd, buffer, 1024);

printf("Here is the request I got: %s\n”, buffer);
write(client_fd, “Never say that again to me!”, 27);

close(client_fd);

many details ommitted, e.g., you must read and write in rounds!

Socket communication — Client Code

m Here is how client code looks like in C++ (simplified!)

client_fd = socket(AF_INET, SOCK_STREAM, 0);

server = gethostbyname(“vulcano.informatik.uni-freiburg.de”);
server_address.sin_family = AF_INET;
server_address.sin_addr.s_addr = server->h_addr; // use bcopy
server_address.sin_port = htons(80);

connect(client_fd, &server_address);

write(client_fd, “Why me?”, 7);

read(client_fd, buffer, 1024);

printf("Here is what the oracle told me: %s\n”, buffer);

close(client_fd);

for details refer to man pages or documentation on the web

Protocol, HTTP

m Processes need to agree on a protocol for the
communication, e.g.

— Process 1: How much is [mathematical expression]

— Process 2: [mathematical expression] is [result]
m HTTP is a *very* simple protocol
— Process 1: GET /index.html HTTP/1.1

— Process 2:

HTTP/1.1 200 OK

Date: Thu, 29 Oct 2009 16:34:12 GMT

[empty line]

Here comes the answer to the request /index.html

More about HTTP

m HTTP can do more stuff though

HEAD: just like GET, but only ask for the headers
POST: send data along with the request

(Note: small data can also be appended to URL in GET)
PUT: Upload data to given URL (similar to FTP)
DELETE: Delete that data
TRACE: echo back request (with changes that happened underway)
OPTIONS: ask which HTTP methods are supported

CONNECT: convert request connection to tunnel

as a minimum GET and HEAD must be supported

Browser « Webserver Communication

m What happens when you type a URL
— say http://ad.informatik.uni-freiburg.de/teaching
— browser creates an internet socket, as described
— binds it to some free local port of your machine, e.g. 17457
— get IP address for ad.informatik.uni-freiburg.de
for this browser has to ask a (nearby) DNS server
— send HTTP request string to that machine on port 80
GET /teaching HTTP/1.1 (and some optional headers)
— receive answer with HTTP headers + newline + contents
» one of the HTTP headers says that it is an HTML page
Content-Type: text/html; charset=utf-8

— browser renders the HTML in a nice way

TCP / IP

m Internet Protocol Suite (TCP / IP is the shortcut)

— Link Layer e.g. Ethernet or WLAN
send packets along local links
— Internet Layer e.g. IPv4 or IPv6
send packets across the Internet, unreliable
— Transport Layer e.g. TCP or UDP
send packets across the Internet, reliably
— Application Layer e.g. HTTP
send a request string, get an answer string

m And below all that is the hardware

— twisted pair cables, coaxial cables, optical fiber

Hardware

m Twisted Pair Cables ’
— cheap, for distances up to 100m
— bandwidth: 1 GBit / second
m Coaxial cables

— more expensive, for distances up to 1000m
— bandwidth: 10 GBit / second

m Optical fibre

— much more expensive, great for long-distance

Jacket

—around 100 GBit / second per channel (frequency) ™

iffier
250 i

— around 100 channels / fibre
— around 100 fibres / cable

Care
uuuuu

recall: typical disk transfer rate is 50 MB = 400 MBIt / second

Link Layer — send packets along single link

m For example, Ethernet

— Computers locally connected via cable (typically twisted
pair Ethernet)

— CSMA / CD protocol
» CSMA = carrier sense multiple access
CD = collision detection

think of several people at a dinner table, only one
person should speak at a time.

— like this, send so-called frames of data

» send bit after bit, abort if collision occurs

m Typical data transfer rate: 1 Gbit / second

Internet Layer — send across Internet, unrel.

m For example, IP = Internet protocol

— send a packet of data from one computer to another
— use Link Layer protocols for each link
— packets consist of: source address, target address, data

— routing is local: each router sends to locally next best
router, based on prefix of target address

— IP is unreliable:
» packets may get lost
» packets may get duplicated
» packets may get distorted

packets may arrive out of order

m Typical data transfer rate: Exercise 4

Transportation Layer — TCP (reliable)

m TCP = Transmission Control Protocol

— send packets reliably:
» NO packet loss or corruption, no out of order arrival
— realized as follows:
» connection establishment via three-way handshake
client SYN, server SYN-ACK, client ACK
» data transfer via packet numbers and acks

1 inA h

AA~t =S o Pa ~r~
UCOSLITIAalIVUILT T11USL

—h
=3
@)
2> 7
=
Q)

resent packages receipt of w
discard duplicate packets
flow control (destination host has limited buffer)

congestion control (“slow start”, etc.)
m Typical data transfer rate: Exercise 4

Transportation Layer — UDP (unreliable)

m UDP = User Datagram Protocol

— send messages via an unreliable Internet Layer protocol
» Messages may arrive out of order
» messages can get lost
» messages can get corrupted
— thereby faster than TCP how much: Exercise 2.3
— unreliability is acceptable in many applications
» DNS serving
» Video streaming, voice over IP, etc.
» online games

m Typical data transfer rate: Exercise 4

Application Layer

m Send and receive following a certain protocol

m For example, HTTP

— send a request string in a particular format
» €.9. GET /xyzHTTP 1.1
— receive an answer string in a particular format
» HTTP headers + empty line + contents
— all kinds of other fancy stuff
caching, keep connection open, etc.
— reliability issues are handled by the underlying layer
» typically TCP

m Typical data transfer rate: Exercise 4

Finally, some HTML

m HTML = hypertext markup language
— primary goal: basic markup for dummies
— mixture between more semantic and purely layout markup
<hl> ... </h1> level-1 heading

 line break
— also contains communication semantics ...
m Forms

<form action="http://some_url” method="GET">
<input type="text” name="query” />
<input type="submit” value="Submit” />
</form>

| why me? Submit |

— will send GET request to http://some_url/?query=why+me%?3f

