Search Engines WS 2009 / 2010

Lecture 5, Thursday November 19 ${ }^{\text {th }}, 2009$ (Efficient List Intersection)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures
Department of Computer Science
University of Freiburg

Overview of today's Lecture

- List intersection
- you already know that it is at the core of what every search engine does
(no fast search without fast list intersection)
- revisit standard (linear-time) algorithm
- prove a lower bound (how fast can we get)
- algorithm that achieves a matching upper bound

■ But before that

- do missing proof for Golomb encoding from the last lecture
- talk a bit about the exercises (again)

Golomb encoding (again)

■ By Solomon Golomb, 1966

- comes with a parameter M (modulus)
- write positive integer x as $q \cdot M+r$
- where $q=x \operatorname{div} M$ and $r=x \bmod M$
- the codeword for x is then the concatenation of
- the quotient q written in unary with 0s
- a single 1 (as a delimiter)
- the remainder r written in binary
- examples

Solomon Golomb *1932 Maryland

Golomb Encoding - Analysis

■ Show that Golomb encoding is optimal

- for gap-encoding inverted lists
- assuming the doc ids in a list of size m are a random subset of size m of all doc ids $1 . . n$
[the proof]

On the exercises

- Amount
- Should be less work this time
- Do you prefer theoretical or practical or a mix?
- About the aspect of well-specifiedness
- I am aware that the exercises are often not fully specified
- this requires two things from your side
- apply your common sense
- in the case of doubt ask (intelligently)
- these are two super-important skills to learn
- real-life (research) problems are always ill-specifed (and actually much worse than in the exercises!)
- common sense + communication are a must

List Intersection — Standard Algorithm

- For two lists A, B of sizes n and m :
[pseudocode of standard algorithm]

Improving the Standard Algorithm

- Two "engineering" problems with the previous code

1. there is an if-statement for each iteration of the loop
why is that a problem?

- modern processors do pipelining = execute future instruction while current instruction is not yet finished
- in the case of an if, the processor tries to predict which part gets executed (so-called branch prediction)
- if the prediction fails, the speculative execution of the future instructions has to be rolled back

2. the if-condition is also quite complex

- costly to evaluate that in each iteration

List Intersection - Improved Version

■ This code is (or can be) significantly faster:
[pseudocode of improved algorithm]

List Intersection — Lower Bound

- Can we do better than order $\mathrm{n}+\mathrm{m}$?
- if we want to compute the *union* of the two lists, we obviously can not
- we have to output $\mathrm{n}+\mathrm{m}$ elements in any case
- for intersection we obviously can for special cases
- for example: largest element of one list is smaller than smallest element of other list
- then we can tell after one comparison that the intersection is empty
- how about the general case
- Problem from now on
- "locate" element from one list in the other list

List Intersection — Improvement 1

■ Let's first try to improve on the standard algorithm

- what if one list is much smaller than the other list?
- length of smaller list is k
- length of larger list is m
- then we can binary search each element of the smaller list in the larger list
[an illustration of this]
- complexity is $\sim \mathrm{k} \cdot \log _{2} \mathrm{~m}$
- this is obviously better than $k+m$ when $k \ll m$

List Intersection — Improvement 2

- Simple observation:
- if the previous element has been located at position i, the next binary search need only look at positions \geq i
[an illustration of this]
- Does this help us?
- in the best case: [short calculation]
- in the worst case: [short calculation]
- in the "average" case: [short calculation]

List Intersection — Lower Bound

- Recall the lower bound for sorting n integers
- there are n ! possible outputs
- the algorithm has to distinguish between all of them
- each comparison distinguishes between two cases
- hence we need at least $\log _{2} \mathrm{n}$! comparisons
- by Stirling's formula $(n / e)^{n} \leq n!\leq n^{n}$
- hence $\log _{2} n!\sim n \cdot \log n$
- hence every comparison-based sorting algorithm has a running time of $\Omega(\mathrm{n} \cdot \log \mathrm{n})$
- Note: not true for non-comparison based algorithms:
[explain by example $0-1$ sequence]

List Intersection — Lower Bound

- Let's try the same for merging two lists A and B
- that is, locate each element from A in B
- again let k and $m=$ number of elements in A and B resp.
- same argument: how many ways are there to locate the k elements from A in the m elements from B
- observe: each such way corresponds to a tuple ($\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}$) where $0 \leq \mathrm{i}_{1} \leq \ldots \leq \mathrm{i}_{\mathrm{k}} \leq \mathrm{m}$
(i_{j} is simply the location of the j-th element of A in B, location 0 means before the first element, location i > 0 means after the i-th element)
- how many such tuples are there?

List Intersection - Lower Bound

- There is a similar quantity which is easy to count
- the number of tuples $\left(i_{1}, \ldots, i_{k}\right)$ where $1 \leq i_{1}<\ldots<i_{k} \leq n$
- this is just the number of size-k subsets of $\{1, \ldots, \mathrm{n}\}$
- and the number of those is n over $k=n!/(k!\cdot(n-k)!)$
- which by Stirling's formula is approximately $(e \cdot n / k)^{k}$
[relate the two kinds of quantities + prove the lower bound]

List Intersection — Matching Upper Bound

■ Idea:

- after previous element from A has been located in B
- start search from that location
- but try to search not much further than next location

```
[an illustration of this]
```

- trick: first *exponentional* search, then binary search
- if the difference from the previous to the next location is d, this can be done in time $O(d)$

Analysis of this algorithm

- Terminology
- Let d_{1}, \ldots, d_{k} be the gaps between the locations of the k elements of A in B
($\mathrm{d}_{1}=$ from beginning to first location)
- note that $\Sigma_{i} d_{i} \leq m=$ number of elements in B
- then the time complexity of the algorithm is $O\left(\Sigma_{i} \log d_{i}\right)$
[derive upper bound in terms of k and m]

