
S h E iSearch Engines
WS 2009 / 2010

Lecture 9, Thursday January 7th, 2010
(Feedback Programming Languages UTF 8)(Feedback, Programming Languages, UTF-8)

Prof. Dr. Hannah Bast
Chair of Algorithms and Data Structures

D t t f C t S iDepartment of Computer Science
University of Freiburg

Overview of Today‘s Lecturey

 Your feedback from Exercise Sheet 8

– Summary of your feedback

– My commentsMy comments

– Things that will change

 Programming Languages Programming Languages

– Which one is the best: C, C++, Java, Perl, Python, ...?

– Of course, it‘s ...

 Character encoding / UTF-8

– What is UTF-8

– Why it is so important for (not only) search engines y p (y) g

2

PART 1: YOUR FEEDBACK

 First of all, thank you!

– vast majority was specific, constructive, and with proper tone

 One slide about each of these points One slide about each of these points

– the lecture itself

th ti i– mathematics vs. programming

– the exercises

– grading

– the Wiki

– the tutorials

3

Feedback: The Lecture Itself

 Mostly positive feedback here

– most of you like the topic

– most of you like the atmospheremost of you like the atmosphere

– most of you like the amount, presentation, structure, etc.

– someone asked for slide numbers– someone asked for slide numbers

I will we happy to add them from now on

some people asked for references– some people asked for references

I will add them from now on, where appropriate

l k d l d ll b f h l– some people asked to post slides well before the lecture

sorry, you are asking for too much

4

Feedback: Mathematics vs. Programmingg g

 Most of you like the programming exercises

– except that they are sometimes too much work

 see later slide see later slide

 Some criticism about the mathematical exercises

id th i d i l t i k d th t‘ f i– some said the exercises need special tricks and that‘s unfair

all exercises so far could be solved with elementary maths

– some wondered about the usefulness of the math exercises

I strongly believe that you have to be good at both
i d th tiprogramming and mathematics

without programming you become a Fachidiot

without mathematics you don‘t learn to become precise
5

Feedback: The Exercises

 Most of you like the exercises themselves, but ...

– ... most of you find it too much work

– some also criticized that some exercises require muchsome also criticized that some exercises require much
more work than others, but you get 1 point for each

 We will do the followingWe will do the following

– I agree that an exercise sheet should not take more
than 6 hours for a good student g

– that means ~ 1 hour / exercise

– plus 1 – 2 hours for the writeup / presentationplus 1 2 hours for the writeup / presentation

– I will try to split tasks such that exercises are of similar
complexityp y

7

Feedback: Gradingg

 Most of you don‘t like the current grading scheme

– it creates more pressure than motivation

 We will do the followingWe will do the following

– you get a mark for your exercises so far; this will be 25% of
your final marky

this ensures backwards compatibility

– the remaining 75% will be computed as followsthe remaining 75% will be computed as follows

you will get a separate mark X for the remaining exercises

you will get a mark Y for the final examyou will get a mark Y for the final exam

if Y better than X, take Y, otherwise the average of X and Y

I thi k th t iI think that is very generous

8

Grading — Exercises vs. Mid-Term Examg

 Two grades so far

– one for the exercises so far

– one for the mid-term so far (11 people participated)one for the mid term so far (11 people participated)

– in all cases, the exercise grade was at least as good as the
grade in the mid-term examg

– here are the grades for the exercises (23)

1.0 x 4, 1.3 x 5, 1.7 x 5, 2.0 x 6, 2.3 x 1, 3.0 x 1, 5.0 x 11.0 x 4, 1.3 x 5, 1.7 x 5, 2.0 x 6, 2.3 x 1, 3.0 x 1, 5.0 x 1

– here are the grades for the mid-term exam (11)

1 0 1 3 2 0 2 0 2 3 2 3 2 7 3 3 4 0 5 0 5 01.0, 1.3, 2.0, 2.0, 2.3, 2.3, 2.7, 3.3, 4.0, 5.0, 5.0

 BTW, here is the date of the final exam

– Friday, March 12, 2010, 14:00h, in HS 026
9

Feedback: The Wiki

 Some criticism here

– some asked why not a forum?

well, I don‘t think the difference is so large, except thatwell, I don t think the difference is so large, except that
it would be more work for us

note that you can subscribe to any page, i.p. the front y y p g , p
page, then it becomes like a mailing list

– many of you complained about the edit conflicts when
submitting

I fully understand, but : why didn‘t you tell us earlier???

Simple solution: we will create the table with your
names and links from now on, and you just upload your
solutions (which can be done concurrently)solutions (which can be done concurrently)

10

Feedback: Tutorials

 Some complaints here

– contents not well synced with the actual problems students
had with the exercise sheets

we will now shift tutorials by one week!

in particular, exercises will have been corrected thenp ,

– many said they would like a master solution

ok, we will provide one from now on (gosh, are we nice)ok, we will provide one from now on (gosh, are we nice)

– more comments in case not all points were obtained

Marjan will try to give more commentsMarjan will try to give more comments

– other comments: let Marjan comment

11

PART 2: PROGRAMMING LANGUAGES

 Which programming language is the best?

– C, C++, Java, Perl, Python, PHP, ... ?

 Obviously depends on the context but what about Obviously depends on the context, but what about

– which language is most efficient (in run time) ?

hi h l i i t / f t t t ?– which language is easiest / fastest to program ?

– which language gives the most reliable programs ?

 We will look at two studies

– an article by Lutz Prechelt: An Empirical Comparison of Seven
Programming Languages. IEEE Computer 33(10), 2000.

– an article by Thomas Bruckschlegel: Micro benchmarking C++,
d bb’ l l 2C#, and Java. Dr. Dobb’s Journal, July 1, 2005.

12

An Empirical Comparison of Seven PLsp p

 Programming languages investigated:

– C, C++, Java, Perl, Python + two other script languages

– a non-trivial program had to be written (phone-book task)a non trivial program had to be written (phone book task)

– about 10 different programmers on average per language

 Suprising result Suprising result

– the average run-time was very similar for all seven languages

– differences in median and best run-time were also not that big

– development time significantly lower for the script languages

– bottom line: variation in programmer‘s efficiciency matters
more than variations in the language‘s efficiency

13

But, to be fair ...,

 ... let‘s look at a simpler task

– for (i = 1; i <= n; ++i) { sum = sum * i + 1; }

– note: the time-comsuming parts of search engine codenote: the time comsuming parts of search engine code
(list intersection, decompression, etc.) are more similar
to this simple task than to Prechelt‘s phone-book task

 Let‘s write the code together and time it:

– in C++ :

– in Java:

– in Perl:in Perl:

14

Some Rules of Thumb

 When 50% run-time improvement matter a lot ...

– ... then C++ is the programming language of choice

 When a factor of 2 in run-time doesn‘t really hurt When a factor of 2 in run time doesn t really hurt ...

– ... then Java / C# will give you code faster and with less pain

if t i C ill fi d di i J / C#– if you are a non-expert in C++, you will find coding in Java / C#
by a factor of 2 – 3 faster

but even if you are an expert in C++ it will be faster simply– but even if you are an expert in C++, it will be faster, simply
because C++ is so full of subtle details and pitfalls

 When a factor of 100 in run-time is insignificant When a factor of 100 in run-time is insignificant ...

– ... then use a script language

f f d d h (d)– up to a factor 5 faster to produce code here (rapid prototyping)

15

Programming Languages — Referencesg g g g

 Lutz Prechelt: An Empirical Comparison of SevenLutz Prechelt: An Empirical Comparison of Seven
Programming Languages. IEEE Computer 33(10):23-
29, 2000.,

http://portal.acm.org/citation.cfm?id=621567

Th B k hl l Mi b h ki C C# Thomas Bruckschlegel: Micro benchmarking C++, C#,
and Java. Dr. Dobb’s Journal, July 1, 2005.

http://www.ddj.com/cpp/184401976

16

PART 3: UTF-8

 What is UTF and why do we need it?

– UTF = Unicode Transformation Format

– a standard for encoding all the characters of the world

– extends the long-standing ASCII / ISO-8859-1

(which can only differentiate between 256 characters)(which can only differentiate between 256 characters)

 How to encode so many different characters?

1 b t i b i l t h– 1 byte is obviously not enough

– 2 bytes are also not enough (≤ 65,536 different characters)

– so take 4 bytes per character  this is what UTF-32 does

– but the size of strings now quadruples compared to ASCII !

– and so does the time to process these strings ...
17

UTF-8 — Propertiesp

 UTF-8 is a variable-byte encoding that realizes all
of the following

– ASCII compatible = a string of characters with ASCIIp g
codes < 128 is the same in ASCII as in UTF-8

– frequent special characters (like ä, á, å) need two bytes,
only very rare characters (old scripts) need four bytes

– no need to decode from left to right, can decode starting
f h ithi t ifrom anywhere within a string

– easy to decode / convert to UTF-32

18

UTF-8 — The Encodingg

 Here is the encoding Unicode  UTF-8

– Case 1: Unicode in [0, 127] = xxxxxxx (7 bits)

 UTF-8 code is 0xxxxxxx (1 byte)

– Case 2: Unicode in [128, 2047] = yyyxxxxxxxx (11 bits)

 UTF-8 code is 110yyyxx 10xxxxxx (2 bytes) UTF 8 code is 110yyyxx 10xxxxxx (2 bytes)

– Case 3: Unicode in [2048, 65535] = yyyyyyyyxxxxxxx (16 bits)

 UTF-8 code is 1110yyyy 10yyyyxx 10xxxxxx (3 bytes) UTF 8 code is 1110yyyy 10yyyyxx 10xxxxxx (3 bytes)

– Case 4: Unicode in [65536, 221 - 1] = zzzzzyyyyyyyyxxxxxxxx

 UTF 8 code is 11110zzz 10zzyyyy 10yyyyxx 10xxxxxx UTF-8 code is 11110zzz 10zzyyyy 10yyyyxx 10xxxxxx

– Could continue with 5-byte and 6-byte sequences, but UTF-8
stops here due to RFC 3629stops here, due to RFC 3629

19

UTF-8 — Some Obervations

 In a multi-byte sequence

– all bytes are ≥ 128, and vice versa such bytes occur only in
multi-byte sequences

– the number of leading 1s in the first byte of a multi-byte
sequence encodes the length of the sequence

– the concatenation of the remaining bits (except for the 0 that
follows the leading 1s) are called the code point

F U i d i [0 221 1] For every Unicode in [0, 221 - 1]

– there is exactly one UTF-8 sequence

– but vice versa not all multi-byte sequences are valid UTF-8

– for example, the 2-byte sequence 11000000 10xxxxxx , why?

– Exercise: characterize all invalid sequences
20

UTF-8 — References

 Wikipedia

– http://en.wikipedia.org/wiki/Unicode

– http://en.wikipedia.org/wiki/UTF-8http://en.wikipedia.org/wiki/UTF 8

 The Unicode consortium

htt // i d /– http://www.unicode.org/

– http://www.unicode.org/versions/Unicode5.2.0/

– http://www.unicode.org/charts/

 RFC 3629

– http://tools.ietf.org/html/rfc3629

21

22

