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Eixercise Sheet 10 — Solutions
Exercise 1 (Hannah)
18 36 18
ForA:(g ? ?),WehaveA-AT:<ig §g>andAT-A: 36 74 32
18 32 26

For the eigenvalues of A-AT we have to compute the zeroes of (59—X)?—492 = A\2—118-A+1080 =
(A—108) - (A—10), hence 108 and 10. The corresponding eigenvectors are easily seen to be (1,1)7
and (1,—1)7.

Without having to compute them, we know that the eigenvalues of AT - A are 108, 10, and 0. We
only need the eigenvectors for 108 and 10, and solving the two corresponding 3 x 3 systems of
equations, we get (1,2,1)T and (0,1, —2)T, respectively.

Normalizing all these eigenvectors, we get the singular value decomposition

(E0)-(1 ) (FF ) (157 58 05)

Exercise 2 (Hannah)

We prove the statement in five steps. In the following || - || always denotes the Frobenius norm
for a matrix and the Ly norm for a vector (in both cases: square root of the sum of the squares
of all entries). Note that for a vector x with entries z1,...,x,, ||z||> = >, 2? = 27 - z. Also

note that the norm of a matrix and of its transpose are equal.

(1) Let U be an m x m column-orthogonal matrix, that is, U7 -U = I. Let x be an m x 1 vector.
Then ||U -z|>= (U -2)T - (U-2) =27 - UT - U-z=2" 2= |z]%

(2) Let again U be an m x m column-orthogonal matrix, and let A be an m x n matrix. Let
ai,...,a, the the n m x 1 columns of A. Then, using (1), we have ||U-A||?> = ||U - (a; ...a,)||* =
(U ar...U-an)lP = U-a1lP+- -+ U - anl® = llar|* +- - +[|an| [ = [[(a1. .. an)[]* = [|A]|.

(3) Let A be an m x n matrix with singular value decomposition U - S - VZ. Then, using (2) two

times, we have [|A|[* = ||U- S VT[]? = ||S- VT2 = [[(S - VI)T[]? = ||V - S||* = [|5]]*.

(4) Let A=U-S-VT as above. Let uy, ..., u,, the the m m x 1 column vectors of U, let s1, ..., s,
the the s singular values in decreasing order, and let vy, ..., v, be the n n x 1 column vectors of
V. Then it is easy to see that A = 2’;1 ;- S; - vl

(2

(5) Let A =U-S-V" as before. Then by (4), we have A = Y7 u;-s;-v and Aj, = Zle ;- S; vk

7 )



and hence A — A, = > 4q Uit S vl'. Hence the singular value decomposition of A — A;, has
Sk+1,- - Sm as its singular values, and hence, by (3), we have ||A — Ay||* = s, + -+ + 2.

Exercise 3 (Hannah)

Let z = ay-u;+- - -+ay,-u,. By assumption, we have that a; = a:uF{ = 0. Since u; is an eigenvector

of A with eigenvalue );, we have that A*-u; = A\*-u;, and hence AF-2 = a - \¥-up+- - -ozn-AfL-un =
ar - AF - (ug + (aofan) - Mo /M) ~us + -+ + (am/aa) - (An/M)" - uy,). Since by assumption, the
eigenvalues of A are all positive and different and \; is the largest, Ao/A1, ..., A\, /A are all < 1.

Hence limy, .o A¥ - 2/( - AF) = uy, and hence limy,_.,, A* - 2/||A* - z|| = u; (it can only converge
to a multiple of u;, and since A* - 2/||A¥ - z|| has norm 1 for all k, it can only be u; itself). As
an aside, this also proves that, asymptotically, the norm of A* - x grows as a; - A¥.

Exercise 4 (Hannah)

Here is a straightforward implementation in C++.

#include <vector>
#include <math.h>

int main(int argc, char** argv)
{
int m = 2;
std: :vector<vector<double> > A;
A.resize(m + 1);
for (int 1 = 1; i <= m; ++i) A[i] .resize(m + 1);

A[11[1] = 2;
Al2111]1 = 1;
AT110[2] = 1;
Af2][2] = 2;

int num_iterations = argc > 1 7 atoi(argv[1]) : 100;
printf ("#iterations = %d\n", num_iterations);
std: :vector<double> x;
x.resize(m + 1);
x[1] = 1; x[2] = 2;
for (int iteration = 1; iteration <= num_iterations; ++iteration)
{
std::vector<double> xx(m + 1);
for (int i = 1; i <= m; ++i)
for (int j = 1; j <= m; ++j) xx[i] += A[i]1[j]1 * x[j1;
double norm = O0;
for (int i = 1; i <= m; ++i) norm += xx[i] * xx[i];
norm = sqrt(norm);
for (int i = 1; i <= m; ++i) x[i] = xx[i] / norm;
}
for (int i = 1; i <= m; ++i) printf("’%10.5f\n", x[il);



