
Chair for Algorithms
and Data Structures

Prof. Dr. Hannah Bast
Marjan Celikik

Search Engines WS 09/10
http://ad.informatik.uni-freiburg.de/teaching

Exercise Sheet 10 — Solutions

Exercise 1 (Hannah)

For A =

(
3 5 5
3 7 1

)
, we have A · AT =

(
59 49
49 59

)
and AT · A =

 18 36 18
36 74 32
18 32 26

.

For the eigenvalues of A·AT , we have to compute the zeroes of (59−λ)2−492 = λ2−118·λ+1080 =
(λ−108) · (λ−10), hence 108 and 10. The corresponding eigenvectors are easily seen to be (1, 1)T

and (1,−1)T .

Without having to compute them, we know that the eigenvalues of AT ·A are 108, 10, and 0. We
only need the eigenvectors for 108 and 10, and solving the two corresponding 3 × 3 systems of
equations, we get (1, 2, 1)T and (0, 1,−2)T , respectively.

Normalizing all these eigenvectors, we get the singular value decomposition

(
3 5 5
3 7 1

)
=

(
1/
√

2 1
√

2

1/
√

2 −1/
√

2

)
·
(√

108 0

0
√

10

)
·
(

1/
√

6 2/
√

6 1/
√

6

0 1/
√

5 −2/
√

5

)
.

Exercise 2 (Hannah)

We prove the statement in five steps. In the following || · || always denotes the Frobenius norm
for a matrix and the L2 norm for a vector (in both cases: square root of the sum of the squares
of all entries). Note that for a vector x with entries x1, . . . , xn, ||x||2 =

∑n
i=1 x

2
i = xT · x. Also

note that the norm of a matrix and of its transpose are equal.

(1) Let U be an m×m column-orthogonal matrix, that is, UT ·U = I. Let x be an m× 1 vector.
Then ||U · x||2 = (U · x)T · (U · x) = xT · UT · U · x = xT · x = ||x||2.

(2) Let again U be an m × m column-orthogonal matrix, and let A be an m × n matrix. Let
a1, . . . , an the the n m× 1 columns of A. Then, using (1), we have ||U ·A||2 = ||U · (a1 . . . an)||2 =
||(U · a1 . . . U · an)||2 = ||U · a1||2 + · · ·+ ||U · an||2 = ||a1||2 + · · ·+ ||an||2 = ||(a1 . . . an)||2 = ||A||2.

(3) Let A be an m× n matrix with singular value decomposition U · S · V T . Then, using (2) two
times, we have ||A||2 = ||U · S · V T ||2 = ||S · V T ||2 = ||(S · V T)T ||2 = ||V · S||2 = ||S||2.

(4) Let A = U ·S ·V T as above. Let u1, . . . , um the the m m×1 column vectors of U , let s1, . . . , sm

the the s singular values in decreasing order, and let v1, . . . , vn be the n n× 1 column vectors of
V . Then it is easy to see that A =

∑m
i=1 ui · si · vT

i .

(5) Let A = U ·S ·V T as before. Then by (4), we have A =
∑m

i=1 ui ·si ·vT
i and Ak =

∑k
i=1 ui ·si ·vT

i ,

and hence A − Ak =
∑m

i=k+1 ui · si · vT
i . Hence the singular value decomposition of A − Ak has

sk+1, . . . , sm as its singular values, and hence, by (3), we have ||A− Ak||2 = s2
k+1 + · · ·+ s2

m.

Exercise 3 (Hannah)

Let x = α1·u1+· · ·+αn·un. By assumption, we have that α1 = x·uT
1 6= 0. Since ui is an eigenvector

of A with eigenvalue λi, we have that Ak ·ui = λk ·ui, and hence Ak ·x = α1 ·λk
1 ·u1+· · ·αn ·λk

n ·un =
α1 · λk

1 ·
(
u1 + (α2/α1) · (λ2/λ1)

k · u2 + · · ·+ (αn/α1) · (λn/λ1)
k · un

)
. Since by assumption, the

eigenvalues of A are all positive and different and λ1 is the largest, λ2/λ1, . . . , λn/λ1 are all < 1.
Hence limk→∞A

k · x/(α1 · λk
1) = u1, and hence limk→∞A

k · x/||Ak · x|| = u1 (it can only converge
to a multiple of u1, and since Ak · x/||Ak · x|| has norm 1 for all k, it can only be u1 itself). As
an aside, this also proves that, asymptotically, the norm of Ak · x grows as α1 · λk

1.

Exercise 4 (Hannah)

Here is a straightforward implementation in C++.

#include <vector>
#include <math.h>

int main(int argc, char** argv)
{
int m = 2;
std::vector<vector<double> > A;
A.resize(m + 1);
for (int i = 1; i <= m; ++i) A[i].resize(m + 1);
A[1][1] = 2;
A[2][1] = 1;
A[1][2] = 1;
A[2][2] = 2;

int num_iterations = argc > 1 ? atoi(argv[1]) : 100;
printf("#iterations = %d\n", num_iterations);
std::vector<double> x;
x.resize(m + 1);
x[1] = 1; x[2] = 2;
for (int iteration = 1; iteration <= num_iterations; ++iteration)
{
std::vector<double> xx(m + 1);
for (int i = 1; i <= m; ++i)
for (int j = 1; j <= m; ++j) xx[i] += A[i][j] * x[j];

double norm = 0;
for (int i = 1; i <= m; ++i) norm += xx[i] * xx[i];
norm = sqrt(norm);
for (int i = 1; i <= m; ++i) x[i] = xx[i] / norm;

}
for (int i = 1; i <= m; ++i) printf("%10.5f\n", x[i]);

}

