Chair for Algorithms and Data Structures
Prof. Dr. Hannah Bast Marjan Celikik

Search Engines WS 09/10

http://ad.informatik.uni-freiburg.de/teaching

Exercise Sheet 6 - Solutions

Exercise 1

TODO.

Exercise 2

TODO.

Exercise 3

TODO.

Exercise 4 (Hannah)
Define $f(x)=x^{2} / 2+x-(1+x) \cdot \ln (1+x)$. We will show that $f(x) \geq 0$ for all $x \geq 0$. Then also $f(x) / x=x / 2+1-(1+1 / x) \cdot \ln (1+x) \geq 0$ for $x>0$, which proves the claim from the exercise for $x>0$. It's easy to verify that it also holds for $x=0$.
We can easily compute the derivative $f^{\prime}(x)=x+1-\ln (1+x)-1=x-\ln (1+x)$. Since $1+x \leq e^{x}$ for all x, we have $f^{\prime}(x) \geq 0$ for all x, that is, f is monotonically increasing over it's whole range. Since $f(0)=0$ that implies $f(x) \geq 0$ for all $x \geq 0$.

