3167
Comment:
|
3500
|
Deletions are marked like this. | Additions are marked like this. |
Line 3: | Line 3: |
Here are PDFs of the slides of the lectures so far: [[attachment:SearchEnginesWS0910/lecture-1.pdf|Lecture 1]], [[attachment:SearchEnginesWS0910/lecture-2.pdf|Lecture 2]], [[attachment:SearchEnginesWS0910/lecture-3.pdf|Lecture 3 (very preliminary version)]]. | Here are PDFs of the slides of the lectures so far: [[attachment:SearchEnginesWS0910/lecture-1.pdf|Lecture 1]], [[attachment:SearchEnginesWS0910/lecture-2.pdf|Lecture 2]], [[attachment:SearchEnginesWS0910/lecture-3.pdf|Lecture 3]], [[attachment:SearchEnginesWS0910/lecture-4.pdf|Lecture 4]]. |
Line 5: | Line 5: |
Here are PDFs of the exercise sheets so far: [[attachment:SearchEnginesWS0910/exercise-1.pdf|Exercise Sheet 1]], [[attachment:SearchEnginesWS0910/exercise-2.pdf|Exercise Sheet 2]], [[attachment:SearchEnginesWS0910/exercise-3.pdf|Exercise Sheet 3 (tentative version!)]]. | Here are .lpd files of the recordings of the lectures so far (except Lecture 2, where we had problems with the microphone): [[http://vulcano.informatik.uni-freiburg.de/lecturnity/lecture-1.lpd|Lecture 1]] [[http://vulcano.informatik.uni-freiburg.de/lecturnity/lecture-3.lpd|Lecture 3]] [[http://vulcano.informatik.uni-freiburg.de/lecturnity/lecture-4.lpd|Lecture 4]]. |
Line 7: | Line 7: |
Here are your solutions and comments on the previous exercise sheets: [[SearchEnginesWS0910/ExerciseSheet1|Exercise Sheet 1]], [[SearchEnginesWS0910/ExerciseSheet2|Exercise Sheet 2]]. | Here are PDFs of the exercise sheets so far: [[attachment:SearchEnginesWS0910/exercise-1.pdf|Exercise Sheet 1]], [[attachment:SearchEnginesWS0910/exercise-2.pdf|Exercise Sheet 2]], [[attachment:SearchEnginesWS0910/exercise-3.pdf|Exercise Sheet 3]], [[attachment:SearchEnginesWS0910/exercise-4.pdf|Exercise Sheet 4]]. Here are your solutions and comments on the previous exercise sheets: [[SearchEnginesWS0910/ExerciseSheet1|Solutions and Comments 1]], [[SearchEnginesWS0910/ExerciseSheet2|Solutions and Comments 2]], [[SearchEnginesWS0910/ExerciseSheet3|Solutions and Comments 3]] = Exercise Sheet 3 = |
Line 11: | Line 15: |
= Exercise Sheet 3 = By popular request, I have already uploaded a tentative version of the next exercise sheet; see above. It may still change (that's what the word tentative means), but probably not much. I will also try to upload a tentative version of my slides for the next lecture later tonight. Several people have asked for this, since they felt they had too little time for the exercises (Thursday - Tuesday) otherwise. By posting a tentative version of the exercise sheet (and possibly also of the slides) two days earlier, you can at least start to think about the exercises. Say that I'm nice! BTW, the next lecture will be about "everything you always wanted to know about ranking". [[SearchEnginesWS0910/ExerciseSheet3|Here you can upload your solutions for Exercise Sheet 3]]. |
[[SearchEnginesWS0910/ExerciseSheet4|Here you can upload your solutions for Exercise Sheet 4]]. |
Line 21: | Line 19: |
Dear Marius + all: Yes, the lectures are recorded, except for Lecture 2, where there were technical problems (no signal from the microphone). I always copy the Lecturnity files to my machine after the lecture, but don't know yet how how to publish them on the web so that they are easily viewable by others. I will meet with our group's technician tomorrow, and ask him about this. Stay tuned! '''Hannah 5Nov09 8:36pm''' | Hi, I just looked at the new exercise sheet 4 and I getting confuse what we need to do for exercise 1. could you please explaind to me with an example? Triatmoko 13Nov09 15.30 |
Line 23: | Line 21: |
Hi, I noticed that you record your lectures. Is it somehow possible to download these recordings or will they be released later? '''Marius Nov5th, 4:54 p.m.''' | And just to clarify what a single-cycle permutation is. Here is an example for an array of size 5 with a permutation that is a single cycle: 5 4 1 3 2. Why single cycle? Well, A[1] = 5, A[5] = 2, A[2] = 4, A[4] = 3, A[3] = 1. (My indices in this example are 1,...,5 and not 0,...,4.) Here is an example of a permutation with three cycles: 2 1 4 3 5. The first cycle is A[1] = 2, A[2] =1. The second cycle is A[3] = 4, A[4] = 3. The third cycle is A[5] = 5. '''Hannah 12Nov09 8:04pm''' |
Line 25: | Line 23: |
Hi Waleed, when you create a conflict, it's your responsibility to remove it and not leave a mess behind. If the instructions given when the conflict occurs do not suffice, try to find more information on the Wiki help pages. '''Hannah 3Nov09 9:00pm''' | Hi Daniel + all, I don't quite understand your question and your example (if your array is 1 5 3 4 2, why is A[1] = 3?). In case you refer to the requirement of the exercise that the permutation consists only of a single cycle. That is because your code should go over each element exactly once (it should, of course, stop after n iterations, where n is the size of the array). If your permutation has more than one cycle, it is hard to achieve that. Also note that for both (1) and (2), the sum of the array values should be sum_i=1,...,n i = n * (n+1) / 2. '''Hannah 12Nov09 7:54pm''' |
Line 27: | Line 25: |
I uploaded my Files and put a new row on table in the excercies sheet 2 page but when i pressed save button it shows me conflict. my version and other version of list. how can i remove conflict? does my assignment is submitted properly or not? '''Waleed''' 3Nov09 | Hi, I just looked at the new exercise sheet 4, in exercise 1 we should generate a permutation and sum the resulting array up, am I wrong or doesn't iterating method two iterate throw the whole array in every situation. for ex.: n= 5 permutation: 1 5 3 4 2, then A[1] = 3, A[A[1]]= A[3] = 1, A[1] = 3 ... '''Daniel 12Nov09 19:44pm''' |
Welcome to the Wiki page of the course Search Engines, WS 2009 / 2010. Lecturer: Hannah Bast. Tutorials: Marjan Celikik. Course web page: click here.
Here are PDFs of the slides of the lectures so far: Lecture 1, Lecture 2, Lecture 3, Lecture 4.
Here are .lpd files of the recordings of the lectures so far (except Lecture 2, where we had problems with the microphone): Lecture 1 Lecture 3 Lecture 4.
Here are PDFs of the exercise sheets so far: Exercise Sheet 1, Exercise Sheet 2, Exercise Sheet 3, Exercise Sheet 4.
Here are your solutions and comments on the previous exercise sheets: Solutions and Comments 1, Solutions and Comments 2, Solutions and Comments 3
Exercise Sheet 3
Here are the rules for the exercises as explained in Lecture 2.
Here you can upload your solutions for Exercise Sheet 4.
Questions or comments below this line, most recent on top please
Hi, I just looked at the new exercise sheet 4 and I getting confuse what we need to do for exercise 1. could you please explaind to me with an example? Triatmoko 13Nov09 15.30
And just to clarify what a single-cycle permutation is. Here is an example for an array of size 5 with a permutation that is a single cycle: 5 4 1 3 2. Why single cycle? Well, A[1] = 5, A[5] = 2, A[2] = 4, A[4] = 3, A[3] = 1. (My indices in this example are 1,...,5 and not 0,...,4.) Here is an example of a permutation with three cycles: 2 1 4 3 5. The first cycle is A[1] = 2, A[2] =1. The second cycle is A[3] = 4, A[4] = 3. The third cycle is A[5] = 5. Hannah 12Nov09 8:04pm
Hi Daniel + all, I don't quite understand your question and your example (if your array is 1 5 3 4 2, why is A[1] = 3?). In case you refer to the requirement of the exercise that the permutation consists only of a single cycle. That is because your code should go over each element exactly once (it should, of course, stop after n iterations, where n is the size of the array). If your permutation has more than one cycle, it is hard to achieve that. Also note that for both (1) and (2), the sum of the array values should be sum_i=1,...,n i = n * (n+1) / 2. Hannah 12Nov09 7:54pm
Hi, I just looked at the new exercise sheet 4, in exercise 1 we should generate a permutation and sum the resulting array up, am I wrong or doesn't iterating method two iterate throw the whole array in every situation. for ex.: n= 5 permutation: 1 5 3 4 2, then A[1] = 3, A[A[1]]= A[3] = 1, A[1] = 3 ... Daniel 12Nov09 19:44pm