781
Comment:
|
3205
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
Welcome to the Wiki page of the course '''Search Engines, WS 2009 / 2010''', lecturer: [[http://ad.informatik.uni-freiburg.de/staff/bast|Hannah Bast]], tutorials: [[http://ad.informatik.uni-freiburg.de/staff/celikik|Marjan Celikik]]. | Welcome to the Wiki page of the course '''Search Engines, WS 2009 / 2010'''. Lecturer: [[http://ad.informatik.uni-freiburg.de/staff/bast|Hannah Bast]]. Tutorials: [[http://ad.informatik.uni-freiburg.de/staff/celikik|Marjan Celikik]]. Course web page: [[http://ad.informatik.uni-freiburg.de/teaching/winter-term-2009-2010/suchmaschinen-vorlesung|click here]]. |
Line 3: | Line 3: |
[[http://ad.informatik.uni-freiburg.de/teaching/winter-term-2009-2010/suchmaschinen-vorlesung|Here is the course web page of the Chair of Algorithms and Data Structures]] | Here are PDFs of the slides of the lectures so far: [[attachment:SearchEnginesWS0910/lecture-1.pdf|Lecture 1]], [[attachment:SearchEnginesWS0910/lecture-2.pdf|Lecture 2]], [[attachment:SearchEnginesWS0910/lecture-3.pdf|Lecture 3]], [[attachment:SearchEnginesWS0910/lecture-4.pdf|Lecture 4]]. |
Line 5: | Line 5: |
Here are the pages for the previous exercise sheets: [we are at the first exercise, so no previous exercise sheets yet] | Here are the recordings of some of the lectures so far (Lecture 1 still missing, in Lecture 2 the microphone signal did not come through): [[http://vulcano.informatik.uni-freiburg.de/lecturnity/lecture1/Search_Engines,_Lecture_3,_5Nov09_1_05_11_2009_16_16_20.html|Lecture 3]] |
Line 7: | Line 7: |
= Exercise Sheet 1 = | Here are PDFs of the exercise sheets so far: [[attachment:SearchEnginesWS0910/exercise-1.pdf|Exercise Sheet 1]], [[attachment:SearchEnginesWS0910/exercise-2.pdf|Exercise Sheet 2]], [[attachment:SearchEnginesWS0910/exercise-3.pdf|Exercise Sheet 3]], [[attachment:SearchEnginesWS0910/exercise-4.pdf|Exercise Sheet 4]]. |
Line 9: | Line 9: |
[[SearchEnginesWS0910/StudentIntros|Introduce yourself on this page please (Exercise 1)]] | Here are your solutions and comments on the previous exercise sheets: [[SearchEnginesWS0910/ExerciseSheet1|Exercise Sheet 1]], [[SearchEnginesWS0910/ExerciseSheet2|Exercise Sheet 2]], [[SearchEnginesWS0910/ExerciseSheet3|Exercise Sheet 3]] |
Line 11: | Line 11: |
[TODO: give instruction on what to upload for exercise sheet 1] | = Exercise Sheet 3 = |
Line 13: | Line 13: |
=== Questions, Comments, Exchange below this line please === | [[SearchEnginesWS0910/Rules|Here are the rules for the exercises as explained in Lecture 2]]. [[SearchEnginesWS0910/ExerciseSheet4|Here you can upload your solutions for Exercise Sheet 4]]. == Questions or comments below this line, most recent on top please == And just to clarify what a single-cycle permutation is. Here is an example for an array of size 5 with a permutation that is a single cycle: 5 4 1 3 2. Why single cycle? Well, A[1] = 5, A[5] = 2, A[2] = 4, A[4] = 3, A[3] = 1. (My indices in this example are 1,...,5 and not 0,...,4.) Here is an example of a permutation with three cycles: 2 1 4 3 5. The first cycle is A[1] = 2, A[2] =1. The second cycle is A[3] = 4, A[4] = 3. The third cycle is A[5] = 5. '''Hannah 12Nov09 8:04pm''' Hi Daniel + all, I don't quite understand your question and your example (if your array is 1 5 3 4 2, why is A[1] = 3?). In case you refer to the requirement of the exercise that the permutation consists only of a single cycle. That is because your code should go over each element exactly once (it should, of course, stop after n iterations, where n is the size of the array). If your permutation has more than one cycle, it is hard to achieve that. Also note that for both (1) and (2), the sum of the array values should be sum_i=1,...,n i = n * (n+1) / 2. '''Hannah 12Nov09 7:54pm''' Hi, I just looked at the new exercise sheet 4, in exercise 1 we should generate a permutation and sum the resulting array up, am I wrong or doesn't iterating method two iterate throw the whole array in every situation. for ex.: n= 5 permutation: 1 5 3 4 2, then A[1] = 3, A[A[1]]= A[3] = 1, A[1] = 3 ... '''Daniel 12Nov09 19:44pm''' |
Welcome to the Wiki page of the course Search Engines, WS 2009 / 2010. Lecturer: Hannah Bast. Tutorials: Marjan Celikik. Course web page: click here.
Here are PDFs of the slides of the lectures so far: Lecture 1, Lecture 2, Lecture 3, Lecture 4.
Here are the recordings of some of the lectures so far (Lecture 1 still missing, in Lecture 2 the microphone signal did not come through): Lecture 3
Here are PDFs of the exercise sheets so far: Exercise Sheet 1, Exercise Sheet 2, Exercise Sheet 3, Exercise Sheet 4.
Here are your solutions and comments on the previous exercise sheets: Exercise Sheet 1, Exercise Sheet 2, Exercise Sheet 3
Exercise Sheet 3
Here are the rules for the exercises as explained in Lecture 2.
Here you can upload your solutions for Exercise Sheet 4.
Questions or comments below this line, most recent on top please
And just to clarify what a single-cycle permutation is. Here is an example for an array of size 5 with a permutation that is a single cycle: 5 4 1 3 2. Why single cycle? Well, A[1] = 5, A[5] = 2, A[2] = 4, A[4] = 3, A[3] = 1. (My indices in this example are 1,...,5 and not 0,...,4.) Here is an example of a permutation with three cycles: 2 1 4 3 5. The first cycle is A[1] = 2, A[2] =1. The second cycle is A[3] = 4, A[4] = 3. The third cycle is A[5] = 5. Hannah 12Nov09 8:04pm
Hi Daniel + all, I don't quite understand your question and your example (if your array is 1 5 3 4 2, why is A[1] = 3?). In case you refer to the requirement of the exercise that the permutation consists only of a single cycle. That is because your code should go over each element exactly once (it should, of course, stop after n iterations, where n is the size of the array). If your permutation has more than one cycle, it is hard to achieve that. Also note that for both (1) and (2), the sum of the array values should be sum_i=1,...,n i = n * (n+1) / 2. Hannah 12Nov09 7:54pm
Hi, I just looked at the new exercise sheet 4, in exercise 1 we should generate a permutation and sum the resulting array up, am I wrong or doesn't iterating method two iterate throw the whole array in every situation. for ex.: n= 5 permutation: 1 5 3 4 2, then A[1] = 3, A[A[1]]= A[3] = 1, A[1] = 3 ... Daniel 12Nov09 19:44pm